scispace - formally typeset
Search or ask a question
Author

Klaus-Robert Müller

Other affiliations: Korea University, University of Tokyo, Fraunhofer Society  ...read more
Bio: Klaus-Robert Müller is an academic researcher from Technical University of Berlin. The author has contributed to research in topics: Artificial neural network & Support vector machine. The author has an hindex of 129, co-authored 764 publications receiving 79391 citations. Previous affiliations of Klaus-Robert Müller include Korea University & University of Tokyo.


Papers
More filters
Posted Content
TL;DR: This short paper summarizes a recent technique introduced by Bach et al. that explains predictions by decomposing the classification decision of DNN models in terms of input variables.
Abstract: Complex nonlinear models such as deep neural network (DNNs) have become an important tool for image classification, speech recognition, natural language processing, and many other fields of application. These models however lack transparency due to their complex nonlinear structure and to the complex data distributions to which they typically apply. As a result, it is difficult to fully characterize what makes these models reach a particular decision for a given input. This lack of transparency can be a drawback, especially in the context of sensitive applications such as medical analysis or security. In this short paper, we summarize a recent technique introduced by Bach et al. [1] that explains predictions by decomposing the classification decision of DNN models in terms of input variables.

33 citations

01 Jan 2009
TL;DR: Two showcase application scenarios are studied: Lateralized Readiness Potential (LRP) analysis, where it is shown that a robust treatment of the EEG allows to reduce the necessary number of trials for averaging and the detrimental influence of ocular artifacts, and single trial classification in the context of Brain Computer Interfacing.
Abstract: Biomedical signals such as EEG are typically contaminated by measurement artifacts, outliers and non-standard noise sources. We propose to use techniques from robust statistics and machine learning to reduce the influence of such distortions. Two showcase application scenarios are studied: (a) Lateralized Readiness Potential (LRP) analysis, where we show that a robust treatment of the EEG allows to reduce the necessary number of trials for averaging and the detrimental influence of e.g. ocular artifacts and (b) single trial classification in the context of Brain Computer Interfacing, where outlier removal procedures can strongly enhance the classification performance.

32 citations

Journal ArticleDOI
TL;DR: This article investigates compression approaches for 3D scene representations, where image and geometry are combined, and focuses on work in which the authors have participated.
Abstract: This article investigates compression approaches for 3D scene representations, where image and geometry are combined. The approaches exemplified in this article mostly focus on work in which the authors have participated.

32 citations

Journal ArticleDOI
TL;DR: The findings imply that the long-range correlative properties of the EEG should be studied in source space, in such a way that the SNR is maximized, or at least with spatial decomposition techniques approximating source activities, rather than in sensor space.

32 citations

Posted Content
TL;DR: In this article, several methods have been proposed to explain the predictions of recurrent neural networks (RNNs), in particular of LSTMs, by assigning to each input variable, e.g., a word, a relevance indicating to which extent it contributed to a particular prediction.
Abstract: Recently, several methods have been proposed to explain the predictions of recurrent neural networks (RNNs), in particular of LSTMs. The goal of these methods is to understand the network's decisions by assigning to each input variable, e.g., a word, a relevance indicating to which extent it contributed to a particular prediction. In previous works, some of these methods were not yet compared to one another, or were evaluated only qualitatively. We close this gap by systematically and quantitatively comparing these methods in different settings, namely (1) a toy arithmetic task which we use as a sanity check, (2) a five-class sentiment prediction of movie reviews, and besides (3) we explore the usefulness of word relevances to build sentence-level representations. Lastly, using the method that performed best in our experiments, we show how specific linguistic phenomena such as the negation in sentiment analysis reflect in terms of relevance patterns, and how the relevance visualization can help to understand the misclassification of individual samples.

32 citations


Cited by
More filters
Proceedings ArticleDOI
27 Jun 2016
TL;DR: In this article, the authors proposed a residual learning framework to ease the training of networks that are substantially deeper than those used previously, which won the 1st place on the ILSVRC 2015 classification task.
Abstract: Deeper neural networks are more difficult to train. We present a residual learning framework to ease the training of networks that are substantially deeper than those used previously. We explicitly reformulate the layers as learning residual functions with reference to the layer inputs, instead of learning unreferenced functions. We provide comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth. On the ImageNet dataset we evaluate residual nets with a depth of up to 152 layers—8× deeper than VGG nets [40] but still having lower complexity. An ensemble of these residual nets achieves 3.57% error on the ImageNet test set. This result won the 1st place on the ILSVRC 2015 classification task. We also present analysis on CIFAR-10 with 100 and 1000 layers. The depth of representations is of central importance for many visual recognition tasks. Solely due to our extremely deep representations, we obtain a 28% relative improvement on the COCO object detection dataset. Deep residual nets are foundations of our submissions to ILSVRC & COCO 2015 competitions1, where we also won the 1st places on the tasks of ImageNet detection, ImageNet localization, COCO detection, and COCO segmentation.

123,388 citations

Posted Content
TL;DR: This work presents a residual learning framework to ease the training of networks that are substantially deeper than those used previously, and provides comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth.
Abstract: Deeper neural networks are more difficult to train. We present a residual learning framework to ease the training of networks that are substantially deeper than those used previously. We explicitly reformulate the layers as learning residual functions with reference to the layer inputs, instead of learning unreferenced functions. We provide comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth. On the ImageNet dataset we evaluate residual nets with a depth of up to 152 layers---8x deeper than VGG nets but still having lower complexity. An ensemble of these residual nets achieves 3.57% error on the ImageNet test set. This result won the 1st place on the ILSVRC 2015 classification task. We also present analysis on CIFAR-10 with 100 and 1000 layers. The depth of representations is of central importance for many visual recognition tasks. Solely due to our extremely deep representations, we obtain a 28% relative improvement on the COCO object detection dataset. Deep residual nets are foundations of our submissions to ILSVRC & COCO 2015 competitions, where we also won the 1st places on the tasks of ImageNet detection, ImageNet localization, COCO detection, and COCO segmentation.

44,703 citations

Book
18 Nov 2016
TL;DR: Deep learning as mentioned in this paper is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts, and it is used in many applications such as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames.
Abstract: Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning. The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models. Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors.

38,208 citations

Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Proceedings Article
Sergey Ioffe1, Christian Szegedy1
06 Jul 2015
TL;DR: Applied to a state-of-the-art image classification model, Batch Normalization achieves the same accuracy with 14 times fewer training steps, and beats the original model by a significant margin.
Abstract: Training Deep Neural Networks is complicated by the fact that the distribution of each layer's inputs changes during training, as the parameters of the previous layers change. This slows down the training by requiring lower learning rates and careful parameter initialization, and makes it notoriously hard to train models with saturating nonlinearities. We refer to this phenomenon as internal covariate shift, and address the problem by normalizing layer inputs. Our method draws its strength from making normalization a part of the model architecture and performing the normalization for each training mini-batch. Batch Normalization allows us to use much higher learning rates and be less careful about initialization, and in some cases eliminates the need for Dropout. Applied to a state-of-the-art image classification model, Batch Normalization achieves the same accuracy with 14 times fewer training steps, and beats the original model by a significant margin. Using an ensemble of batch-normalized networks, we improve upon the best published result on ImageNet classification: reaching 4.82% top-5 test error, exceeding the accuracy of human raters.

30,843 citations