scispace - formally typeset
Search or ask a question
Author

Klement Tockner

Bio: Klement Tockner is an academic researcher from Free University of Berlin. The author has contributed to research in topics: Floodplain & Riparian zone. The author has an hindex of 77, co-authored 229 publications receiving 23368 citations. Previous affiliations of Klement Tockner include University of Konstanz & Leibniz Association.


Papers
More filters
Journal ArticleDOI
TL;DR: The most threatened flood plains will be those in south-east Asia, Sahelian Africa and North America as mentioned in this paper, and the most threatened areas are the flood plains in south east Asia, sub-Saharan Africa, and south west Africa.
Abstract: Natural flood plains are among the most biologically productive and diverse ecosystems on earth. Globally, riverine flood plains cover > 2 × 106 km2, however, they are among the most threatened ecosystems. Floodplain degradation is closely linked to the rapid decline in freshwater biodiversity; the main reasons for the latter being habitat alteration, flow and flood control, species invasion and pollution. In Europe and North America, up to 90% of flood plains are already ‘cultivated’ and therefore functionally extinct. In the developing world, the remaining natural flood plains are disappearing at an accelerating rate, primarily as a result of changing hydrology. Up to the 2025 time horizon, the future increase of human population will lead to further degradation of riparian areas, intensification of the hydrological cycle, increase in the discharge of pollutants, and further proliferation of species invasions. In the near future, the most threatened flood plains will be those in south-east Asia, Sahelian Africa and North America. There is an urgent need to preserve existing, intact flood plain rivers as strategic global resources and to begin to restore hydrologic dynamics, sediment transport and riparian vegetation to those rivers that retain some level of ecological integrity. Otherwise, dramatic extinctions of aquatic and riparian species and of ecosystem services are faced within the next few decades.

1,753 citations

Journal ArticleDOI
TL;DR: In this article, major new initiatives in hydropower development are now under way, and at least 3,700 major dams, each with a capacity of more than 1MW, are either planned or under construction, primarily in countries with emerging economies.
Abstract: Human population growth, economic development, climate change, and the need to close the electricity access gap have stimulated the search for new sources of renewable energy. In response to this need, major new initiatives in hydropower development are now under way. At least 3,700 major dams, each with a capacity of more than 1 MW, are either planned or under construction, primarily in countries with emerging economies. These dams are predicted to increase the present global hydroelectricity capacity by 73 % to about 1,700 GW. Even such a dramatic expansion in hydropower capacity will be insufficient to compensate for the increasing electricity demand. Furthermore, it will only partially close the electricity gap, may not substantially reduce greenhouse gas emission (carbon dioxide and methane), and may not erase interdependencies and social conflicts. At the same time, it is certain to reduce the number of our planet’s remaining free-flowing large rivers by about 21 %. Clearly, there is an urgent need to evaluate and to mitigate the social, economic, and ecological ramifications of the current boom in global dam construction.

1,462 citations

Journal ArticleDOI
TL;DR: Efforts to reverse global trends in freshwater degradation now depend on bridging an immense gap between the aspirations of conservation biologists and the accelerating rate of species endangerment.
Abstract: In the 12 years since Dudgeon et al. (2006) reviewed major pressures on freshwater ecosystems, the biodiversity crisis in the world’s lakes, reservoirs, rivers, streams and wetlands has deepened. While lakes, reservoirs and rivers cover only 2.3% of the Earth’s surface, these ecosystems host at least 9.5% of the Earth’s described animal species. Furthermore, using the World Wide Fund for Nature’s Living Planet Index, freshwater population declines (83% between 1970 and 2014) continue to outpace contemporaneous declines in marine or terrestrial systems. The Anthropocene has brought multiple new and varied threats that disproportionately impact freshwater systems. We document 12 emerging threats to freshwater biodiversity that are either entirely new since 2006 or have since intensified: (i) changing climates; (ii) e-commerce and invasions; (iii) infectious diseases; (iv) harmful algal blooms; (v) expanding hydropower; (vi) emerging contaminants; (vii) engineered nanomaterials; (viii) microplastic pollution; (ix) light and noise; (x) freshwater salinisation; (xi) declining calcium; and (xii) cumulative stressors. Effects are evidenced for amphibians, fishes, invertebrates, microbes, plants, turtles and waterbirds, with potential for ecosystem-level changes through bottom-up and top-down processes. In our highly uncertain future, the net effects of these threats raise serious concerns for freshwater ecosystems. However, we also highlight opportunities for conservation gains as a result of novel management tools (e.g. environmental flows, environmental DNA) and specific conservation-oriented actions (e.g. dam removal, habitat protection policies,managed relocation of species) that have been met with varying levels of success.Moving forward, we advocate hybrid approaches that manage fresh waters as crucial ecosystems for human life support as well as essential hotspots of biodiversity and ecological function. Efforts to reverse global trends in freshwater degradation now depend on bridging an immense gap between the aspirations of conservation biologists and the accelerating rate of species endangerment.

1,230 citations

Journal ArticleDOI
01 May 2019-Nature
TL;DR: A comprehensive assessment of the world’s rivers and their connectivity shows that only 37 per cent of rivers longer than 1,000 kilometres remain free-flowing over their entire length.
Abstract: Free-flowing rivers (FFRs) support diverse, complex and dynamic ecosystems globally, providing important societal and economic services. Infrastructure development threatens the ecosystem processes, biodiversity and services that these rivers support. Here we assess the connectivity status of 12 million kilometres of rivers globally and identify those that remain free-flowing in their entire length. Only 37 per cent of rivers longer than 1,000 kilometres remain free-flowing over their entire length and 23 per cent flow uninterrupted to the ocean. Very long FFRs are largely restricted to remote regions of the Arctic and of the Amazon and Congo basins. In densely populated areas only few very long rivers remain free-flowing, such as the Irrawaddy and Salween. Dams and reservoirs and their up- and downstream propagation of fragmentation and flow regulation are the leading contributors to the loss of river connectivity. By applying a new method to quantify riverine connectivity and map FFRs, we provide a foundation for concerted global and national strategies to maintain or restore them. A comprehensive assessment of the world’s rivers and their connectivity shows that only 37 per cent of rivers longer than 1,000 kilometres remain free-flowing over their entire length.

1,071 citations

Journal ArticleDOI
TL;DR: In this article, a hierarchical framework for examining diversity patterns in floodplain rivers is proposed, which is based on the concept of transition zones between adjacent patches and the strength of interactions across ecotones.
Abstract: A high level of spatio-temporal heterogeneity makes riverine floodplains among the most species-rich environments known. Fluvial dynamics from flooding play a major role in maintaining a diversity of lentic, lotic and semi-aquatic habitat types, each represented by a diversity of successional stages. Ecotones (transition zones between adjacent patches) and connectivity (the strength of interactions across ecotones) are structural and functional elements that result from and contribute to the spatio-temporal dynamics of riverine ecosystems. In floodplain rivers, ecotones and their adjoining patches are arrayed in hierarchical series across a range of scales. At a coarse scale of resolution, fringing floodplains are themselves complex ecotones between river channels and uplands. At finer scales, patches of various types and sizes form habitat and microhabitat diversity patterns. A broad spatio-temporal perspective, including patterns and processes across scales, is needed in order to gain insight into riverine biodiversity. We propose a hierarchical framework for examining diversity patterns in floodplain rivers. Various river management schemes disrupt the interactions that structure ecotones and alter the connectivity across transition zones. Such disruptions occur both within and between hierarchical levels, invariably leading to reductions in biodiversity. Species richness data from the connected and disconnected floodplains of the Austrian Danube illustrate this clearly. In much of the world, species-rich riverine/floodplain environments exist only as isolated fragments across the landscape. In many large rivers, these islands of biodiversity are endangered ecosystems. The fluvial dynamics that formed them have been severely altered. Without ecologically sound restoration of disturbance regimes and connectivity, these remnants of biodiversity will proceed on unidirectional trajectories toward senescence, without rejuvenation. Principles of ecosystem management are necessary to sustain biodiversity in fragmented riverine floodplains. Copyright © 1999 John Wiley & Sons, Ltd.

1,021 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: Preface to the Princeton Landmarks in Biology Edition vii Preface xi Symbols used xiii 1.
Abstract: Preface to the Princeton Landmarks in Biology Edition vii Preface xi Symbols Used xiii 1. The Importance of Islands 3 2. Area and Number of Speicies 8 3. Further Explanations of the Area-Diversity Pattern 19 4. The Strategy of Colonization 68 5. Invasibility and the Variable Niche 94 6. Stepping Stones and Biotic Exchange 123 7. Evolutionary Changes Following Colonization 145 8. Prospect 181 Glossary 185 References 193 Index 201

14,171 citations

Proceedings ArticleDOI
22 Jan 2006
TL;DR: Some of the major results in random graphs and some of the more challenging open problems are reviewed, including those related to the WWW.
Abstract: We will review some of the major results in random graphs and some of the more challenging open problems. We will cover algorithmic and structural questions. We will touch on newer models, including those related to the WWW.

7,116 citations

Journal ArticleDOI
TL;DR: This article explores the special features of freshwater habitats and the biodiversity they support that makes them especially vulnerable to human activities and advocates continuing attempts to check species loss but urges adoption of a compromise position of management for biodiversity conservation, ecosystem functioning and resilience, and human livelihoods.
Abstract: Freshwater biodiversity is the over-riding conservation priority during the International Decade for Action - 'Water for Life' - 2005 to 2015. Fresh water makes up only 0.01% of the World's water and approximately 0.8% of the Earth's surface, yet this tiny fraction of global water supports at least 100000 species out of approximately 1.8 million - almost 6% of all described species. Inland waters and freshwater biodiversity constitute a valuable natural resource, in economic, cultural, aesthetic, scientific and educational terms. Their conservation and management are critical to the interests of all humans, nations and governments. Yet this precious heritage is in crisis. Fresh waters are experiencing declines in biodiversity far greater than those in the most affected terrestrial ecosystems, and if trends in human demands for water remain unaltered and species losses continue at current rates, the opportunity to conserve much of the remaining biodiversity in fresh water will vanish before the 'Water for Life' decade ends in 2015. Why is this so, and what is being done about it? This article explores the special features of freshwater habitats and the biodiversity they support that makes them especially vulnerable to human activities. We document threats to global freshwater biodiversity under five headings: overexploitation; water pollution; flow modification; destruction or degradation of habitat; and invasion by exotic species. Their combined and interacting influences have resulted in population declines and range reduction of freshwater biodiversity worldwide. Conservation of biodiversity is complicated by the landscape position of rivers and wetlands as 'receivers' of land-use effluents, and the problems posed by endemism and thus non-substitutability. In addition, in many parts of the world, fresh water is subject to severe competition among multiple human stakeholders. Protection of freshwater biodiversity is perhaps the ultimate conservation challenge because it is influenced by the upstream drainage network, the surrounding land, the riparian zone, and - in the case of migrating aquatic fauna - downstream reaches. Such prerequisites are hardly ever met. Immediate action is needed where opportunities exist to set aside intact lake and river ecosystems within large protected areas. For most of the global land surface, trade-offs between conservation of freshwater biodiversity and human use of ecosystem goods and services are necessary. We advocate continuing attempts to check species loss but, in many situations, urge adoption of a compromise position of management for biodiversity conservation, ecosystem functioning and resilience, and human livelihoods in order to provide a viable long-term basis for freshwater conservation. Recognition of this need will require adoption of a new paradigm for biodiversity protection and freshwater ecosystem management - one that has been appropriately termed 'reconciliation ecology'.

5,857 citations

Journal ArticleDOI
TL;DR: The thermal properties of carbon materials are reviewed, focusing on recent results for graphene, carbon nanotubes and nanostructured carbon materials with different degrees of disorder, with special attention given to the unusual size dependence of heat conduction in two-dimensional crystals.
Abstract: Recent years have seen a rapid growth of interest by the scientific and engineering communities in the thermal properties of materials. Heat removal has become a crucial issue for continuing progress in the electronic industry, and thermal conduction in low-dimensional structures has revealed truly intriguing features. Carbon allotropes and their derivatives occupy a unique place in terms of their ability to conduct heat. The room-temperature thermal conductivity of carbon materials span an extraordinary large range--of over five orders of magnitude--from the lowest in amorphous carbons to the highest in graphene and carbon nanotubes. Here, I review the thermal properties of carbon materials focusing on recent results for graphene, carbon nanotubes and nanostructured carbon materials with different degrees of disorder. Special attention is given to the unusual size dependence of heat conduction in two-dimensional crystals and, specifically, in graphene. I also describe the prospects of applications of graphene and carbon materials for thermal management of electronics.

5,189 citations