scispace - formally typeset
Search or ask a question
Author

Kobus Barnard

Bio: Kobus Barnard is an academic researcher from University of Arizona. The author has contributed to research in topics: Color constancy & Image retrieval. The author has an hindex of 39, co-authored 122 publications receiving 9059 citations. Previous affiliations of Kobus Barnard include Simon Fraser University & University of California, Berkeley.


Papers
More filters
Book ChapterDOI
28 May 2002
TL;DR: This work shows how to cluster words that individually are difficult to predict into clusters that can be predicted well, and cannot predict the distinction between train and locomotive using the current set of features, but can predict the underlying concept.
Abstract: We describe a model of object recognition as machine translation. In this model, recognition is a process of annotating image regions with words. Firstly, images are segmented into regions, which are classified into region types using a variety of features. A mapping between region types and keywords supplied with the images, is then learned, using a method based around EM. This process is analogous with learning a lexicon from an aligned bitext. For the implementation we describe, these words are nouns taken from a large vocabulary. On a large test set, the method can predict numerous words with high accuracy. Simple methods identify words that cannot be predicted well. We show how to cluster words that individually are difficult to predict into clusters that can be predicted well -- for example, we cannot predict the distinction between train and locomotive using the current set of features, but we can predict the underlying concept. The method is trained on a substantial collection of images. Extensive experimental results illustrate the strengths and weaknesses of the approach.

1,765 citations

Journal ArticleDOI
TL;DR: A new approach for modeling multi-modal data sets, focusing on the specific case of segmented images with associated text, is presented, and a number of models for the joint distribution of image regions and words are developed, including several which explicitly learn the correspondence between regions and Words.
Abstract: We present a new approach for modeling multi-modal data sets, focusing on the specific case of segmented images with associated text. Learning the joint distribution of image regions and words has many applications. We consider in detail predicting words associated with whole images (auto-annotation) and corresponding to particular image regions (region naming). Auto-annotation might help organize and access large collections of images. Region naming is a model of object recognition as a process of translating image regions to words, much as one might translate from one language to another. Learning the relationships between image regions and semantic correlates (words) is an interesting example of multi-modal data mining, particularly because it is typically hard to apply data mining techniques to collections of images. We develop a number of models for the joint distribution of image regions and words, including several which explicitly learn the correspondence between regions and words. We study multi-modal and correspondence extensions to Hofmann's hierarchical clustering/aspect model, a translation model adapted from statistical machine translation (Brown et al.), and a multi-modal extension to mixture of latent Dirichlet allocation (MoM-LDA). All models are assessed using a large collection of annotated images of real scenes. We study in depth the difficult problem of measuring performance. For the annotation task, we look at prediction performance on held out data. We present three alternative measures, oriented toward different types of task. Measuring the performance of correspondence methods is harder, because one must determine whether a word has been placed on the right region of an image. We can use annotation performance as a proxy measure, but accurate measurement requires hand labeled data, and thus must occur on a smaller scale. We show results using both an annotation proxy, and manually labeled data.

1,726 citations

Proceedings ArticleDOI
07 Jul 2001
TL;DR: In this article, a statistical model for organizing image collections which integrates semantic information provided by associate text and image features is presented. But the model is not suitable for unsupervised learning for object recognition.
Abstract: We present a statistical model for organizing image collections which integrates semantic information provided by associate text and visual information provided by image features. The model is very promising for information retrieval tasks such as database browsing and searching for images based on text and/or image features. Furthermore, since the model learns relationships between text and image features, it can be used for novel applications such as associating words with pictures, and unsupervised learning for object recognition.

543 citations

Journal ArticleDOI
TL;DR: Algorithm performance as a function of the number of surfaces in scenes generated from reflectance spectra, the relative effect on the algorithms of added specularities, and the effect of subsequent clipping of the data is considered.
Abstract: We introduce a context for testing computational color constancy, specify our approach to the implementation of a number of the leading algorithms, and report the results of three experiments using synthesized data. Experiments using synthesized data are important because the ground truth is known, possible confounds due to camera characterization and pre-processing are absent, and various factors affecting color constancy can be efficiently investigated because they can be manipulated individually and precisely. The algorithms chosen for close study include two gray world methods, a limiting case of a version of the Retinex method, a number of variants of Forsyth's (1990) gamut-mapping method, Cardei et al.'s (2000) neural net method, and Finlayson et al.'s color by correlation method (Finlayson et al. 1997, 2001; Hubel and Finlayson 2000) . We investigate the ability of these algorithms to make estimates of three different color constancy quantities: the chromaticity of the scene illuminant, the overall magnitude of that illuminant, and a corrected, illumination invariant, image. We consider algorithm performance as a function of the number of surfaces in scenes generated from reflectance spectra, the relative effect on the algorithms of added specularities, and the effect of subsequent clipping of the data. All data is available on-line at http://www.cs.sfu.ca//spl sim/color/data, and implementations for most of the algorithms are also available (http://www.cs.sfu.ca//spl sim/color/code).

456 citations

Journal ArticleDOI
TL;DR: Here exploiting pixel intensity proved to be more beneficial than exploiting the details of image chromaticity statistics, and the three-dimensional (3-D) gamut-mapping algorithms gave the best performance.
Abstract: For pt.I see ibid., vol. 11, no.9, p.972-84 (2002). We test a number of the leading computational color constancy algorithms using a comprehensive set of images. These were of 33 different scenes under 11 different sources representative of common illumination conditions. The algorithms studied include two gray world methods, a version of the Retinex method, several variants of Forsyth's (1990) gamut-mapping method, Cardei et al.'s (2000) neural net method, and Finlayson et al.'s color by correlation method (Finlayson et al. 1997, 2001; Hubel and Finlayson 2000). We discuss a number of issues in applying color constancy ideas to image data, and study in depth the effect of different preprocessing strategies. We compare the performance of the algorithms on image data with their performance on synthesized data. All data used for this study are available online at http://www.cs.sfu.ca//spl sim/color/data, and implementations for most of the algorithms are also available (http://www.cs.sfu.ca//spl sim/color/code). Experiments with synthesized data (part one of this paper) suggested that the methods which emphasize the use of the input data statistics, specifically color by correlation and the neural net algorithm, are potentially the most effective at estimating the chromaticity of the scene illuminant. Unfortunately, we were unable to realize comparable performance on real images. Here exploiting pixel intensity proved to be more beneficial than exploiting the details of image chromaticity statistics, and the three-dimensional (3-D) gamut-mapping algorithms gave the best performance.

400 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: The state-of-the-art in evaluated methods for both classification and detection are reviewed, whether the methods are statistically different, what they are learning from the images, and what the methods find easy or confuse.
Abstract: The Pascal Visual Object Classes (VOC) challenge is a benchmark in visual object category recognition and detection, providing the vision and machine learning communities with a standard dataset of images and annotation, and standard evaluation procedures. Organised annually from 2005 to present, the challenge and its associated dataset has become accepted as the benchmark for object detection. This paper describes the dataset and evaluation procedure. We review the state-of-the-art in evaluated methods for both classification and detection, analyse whether the methods are statistically different, what they are learning from the images (e.g. the object or its context), and what the methods find easy or confuse. The paper concludes with lessons learnt in the three year history of the challenge, and proposes directions for future improvement and extension.

15,935 citations

Christopher M. Bishop1
01 Jan 2006
TL;DR: Probability distributions of linear models for regression and classification are given in this article, along with a discussion of combining models and combining models in the context of machine learning and classification.
Abstract: Probability Distributions.- Linear Models for Regression.- Linear Models for Classification.- Neural Networks.- Kernel Methods.- Sparse Kernel Machines.- Graphical Models.- Mixture Models and EM.- Approximate Inference.- Sampling Methods.- Continuous Latent Variables.- Sequential Data.- Combining Models.

10,141 citations

Proceedings ArticleDOI
07 Jun 2015
TL;DR: A model that generates natural language descriptions of images and their regions based on a novel combination of Convolutional Neural Networks over image regions, bidirectional Recurrent Neural networks over sentences, and a structured objective that aligns the two modalities through a multimodal embedding is presented.
Abstract: We present a model that generates natural language descriptions of images and their regions. Our approach leverages datasets of images and their sentence descriptions to learn about the inter-modal correspondences between language and visual data. Our alignment model is based on a novel combination of Convolutional Neural Networks over image regions, bidirectional Recurrent Neural Networks over sentences, and a structured objective that aligns the two modalities through a multimodal embedding. We then describe a Multimodal Recurrent Neural Network architecture that uses the inferred alignments to learn to generate novel descriptions of image regions. We demonstrate that our alignment model produces state of the art results in retrieval experiments on Flickr8K, Flickr30K and MSCOCO datasets. We then show that the generated descriptions significantly outperform retrieval baselines on both full images and on a new dataset of region-level annotations.

3,996 citations

01 Jan 2004
TL;DR: Comprehensive and up-to-date, this book includes essential topics that either reflect practical significance or are of theoretical importance and describes numerous important application areas such as image based rendering and digital libraries.
Abstract: From the Publisher: The accessible presentation of this book gives both a general view of the entire computer vision enterprise and also offers sufficient detail to be able to build useful applications. Users learn techniques that have proven to be useful by first-hand experience and a wide range of mathematical methods. A CD-ROM with every copy of the text contains source code for programming practice, color images, and illustrative movies. Comprehensive and up-to-date, this book includes essential topics that either reflect practical significance or are of theoretical importance. Topics are discussed in substantial and increasing depth. Application surveys describe numerous important application areas such as image based rendering and digital libraries. Many important algorithms broken down and illustrated in pseudo code. Appropriate for use by engineers as a comprehensive reference to the computer vision enterprise.

3,627 citations