scispace - formally typeset
Search or ask a question
Author

Koh Hosoda

Bio: Koh Hosoda is an academic researcher from Osaka University. The author has contributed to research in topics: Robot & Robot learning. The author has an hindex of 34, co-authored 272 publications receiving 5251 citations. Previous affiliations of Koh Hosoda include Kyoto University & University of Nevada, Las Vegas.


Papers
More filters
Journal ArticleDOI
TL;DR: Cognitive developmental robotics aims to provide new understanding of how human's higher cognitive functions develop by means of a synthetic approach that developmentally constructs cognitive functions through interactions with the environment, including other agents.
Abstract: Cognitive developmental robotics (CDR) aims to provide new understanding of how human's higher cognitive functions develop by means of a synthetic approach that developmentally constructs cognitive functions. The core idea of CDR is ldquophysical embodimentrdquo that enables information structuring through interactions with the environment, including other agents. The idea is shaped based on the hypothesized development model of human cognitive functions from body representation to social behavior. Along with the model, studies of CDR and related works are introduced, and discussion on the model and future issues are argued.

519 citations

Proceedings ArticleDOI
12 Sep 1994
TL;DR: The proposed visual servoing control scheme ensures the convergence of the image-features to desired trajectories, by using the estimated Jacobian matrix, which is proved by the Lyapunov stability theory.
Abstract: Proposes a versatile visual servoing control scheme with a Jacobian matrix estimator. The Jacobian matrix estimator does not need a priori knowledge of the kinematic structure and parameters of the robot system, such as camera and link parameters. The proposed visual servoing control scheme ensures the convergence of the image-features to desired trajectories, by using the estimated Jacobian matrix, which is proved by the Lyapunov stability theory. To show the effectiveness of the proposed scheme, simulation and experimental results are presented. >

380 citations

Journal ArticleDOI
TL;DR: A method of vision-based reinforcement learning by which a robot learns to shoot a ball into a goal by using Learning from Easy Missions (or LEM), which reduces the learning time from exponential to almost linear order in the size of the state space.
Abstract: This paper presents a method of vision-based reinforcement learning by which a robot learns to shoot a ball into a goal. We discuss several issues in applying the reinforcement learning method to a real robot with vision sensor by which the robot can obtain information about the changes in an environment. First, we construct a state space in terms of size, position, and orientation of a ball and a goal in an image, and an action space is designed in terms of the action commands to be sent to the left and right motors of a mobile robot. This causes a “state-action deviation” problem in constructing the state and action spaces that reflect the outputs from physical sensors and actuators, respectively. To deal with this issue, an action set is constructed in a way that one action consists of a series of the same action primitive which is successively executed until the current state changes. Next, to speed up the learning time, a mechanism of Learning from Easy Missions (or LEM) is implemented. LEM reduces the learning time from exponential to almost linear order in the size of the state space. The results of computer simulations and real robot experiments are given.

266 citations

Journal ArticleDOI
TL;DR: Experimental results demonstrate the discriminating ability of the fingertip: it can discriminate five different materials by pushing and rubbing the objects.

230 citations

Journal ArticleDOI
TL;DR: The experimental results show that the proposed model makes the robot reproduce the developmental process of infants' joint attention, which could be one of the models to explain how infants develop the ability of joint attention.
Abstract: This paper presents a constructive model by which a robot acquires the ability of joint attention with a human caregiver based on its embedded mechanisms of visual attention and learning with self-evaluation. The former is to look at a salient object in the robot's view, and the latter is to learn sensorimotor co-ordination when visual attention has succeeded. Since the success of visual attention does not always correspond to the success of joint attention, the robot has incorrect learning data for joint attention as well as correct data. However, the robot is expected statistically to lose incorrect data as outliers since such data do not have any correlation in the sensorimotor co-ordination while correct data have a correlation. The robot consequently acquires the ability of joint attention by finding the correlation in the sensorimotor co-ordination even if multiple objects are placed at random positions in an environment and a human caregiver does not provide any task evaluation to the robot. The experimental results show that the proposed model makes the robot reproduce the developmental process of infants' joint attention. Therefore, the proposed model could be one of the models to explain how infants develop the ability of joint attention.

207 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis.
Abstract: Machine Learning is the study of methods for programming computers to learn. Computers are applied to a wide range of tasks, and for most of these it is relatively easy for programmers to design and implement the necessary software. However, there are many tasks for which this is difficult or impossible. These can be divided into four general categories. First, there are problems for which there exist no human experts. For example, in modern automated manufacturing facilities, there is a need to predict machine failures before they occur by analyzing sensor readings. Because the machines are new, there are no human experts who can be interviewed by a programmer to provide the knowledge necessary to build a computer system. A machine learning system can study recorded data and subsequent machine failures and learn prediction rules. Second, there are problems where human experts exist, but where they are unable to explain their expertise. This is the case in many perceptual tasks, such as speech recognition, hand-writing recognition, and natural language understanding. Virtually all humans exhibit expert-level abilities on these tasks, but none of them can describe the detailed steps that they follow as they perform them. Fortunately, humans can provide machines with examples of the inputs and correct outputs for these tasks, so machine learning algorithms can learn to map the inputs to the outputs. Third, there are problems where phenomena are changing rapidly. In finance, for example, people would like to predict the future behavior of the stock market, of consumer purchases, or of exchange rates. These behaviors change frequently, so that even if a programmer could construct a good predictive computer program, it would need to be rewritten frequently. A learning program can relieve the programmer of this burden by constantly modifying and tuning a set of learned prediction rules. Fourth, there are applications that need to be customized for each computer user separately. Consider, for example, a program to filter unwanted electronic mail messages. Different users will need different filters. It is unreasonable to expect each user to program his or her own rules, and it is infeasible to provide every user with a software engineer to keep the rules up-to-date. A machine learning system can learn which mail messages the user rejects and maintain the filtering rules automatically. Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis. Statistics focuses on understanding the phenomena that have generated the data, often with the goal of testing different hypotheses about those phenomena. Data mining seeks to find patterns in the data that are understandable by people. Psychological studies of human learning aspire to understand the mechanisms underlying the various learning behaviors exhibited by people (concept learning, skill acquisition, strategy change, etc.).

13,246 citations

Journal ArticleDOI
06 Jun 1986-JAMA
TL;DR: The editors have done a masterful job of weaving together the biologic, the behavioral, and the clinical sciences into a single tapestry in which everyone from the molecular biologist to the practicing psychiatrist can find and appreciate his or her own research.
Abstract: I have developed "tennis elbow" from lugging this book around the past four weeks, but it is worth the pain, the effort, and the aspirin. It is also worth the (relatively speaking) bargain price. Including appendixes, this book contains 894 pages of text. The entire panorama of the neural sciences is surveyed and examined, and it is comprehensive in its scope, from genomes to social behaviors. The editors explicitly state that the book is designed as "an introductory text for students of biology, behavior, and medicine," but it is hard to imagine any audience, interested in any fragment of neuroscience at any level of sophistication, that would not enjoy this book. The editors have done a masterful job of weaving together the biologic, the behavioral, and the clinical sciences into a single tapestry in which everyone from the molecular biologist to the practicing psychiatrist can find and appreciate his or

7,563 citations

Journal ArticleDOI
01 Oct 1996
TL;DR: This article provides a tutorial introduction to visual servo control of robotic manipulators by reviewing the prerequisite topics from robotics and computer vision, including a brief review of coordinate transformations, velocity representation, and a description of the geometric aspects of the image formation process.
Abstract: This article provides a tutorial introduction to visual servo control of robotic manipulators. Since the topic spans many disciplines our goal is limited to providing a basic conceptual framework. We begin by reviewing the prerequisite topics from robotics and computer vision, including a brief review of coordinate transformations, velocity representation, and a description of the geometric aspects of the image formation process. We then present a taxonomy of visual servo control systems. The two major classes of systems, position-based and image-based systems, are then discussed in detail. Since any visual servo system must be capable of tracking image features in a sequence of images, we also include an overview of feature-based and correlation-based methods for tracking. We conclude the tutorial with a number of observations on the current directions of the research field of visual servo control.

3,619 citations

Journal ArticleDOI
TL;DR: It is shown that options enable temporally abstract knowledge and action to be included in the reinforcement learning frame- work in a natural and general way and may be used interchangeably with primitive actions in planning methods such as dynamic pro- gramming and in learning methodssuch as Q-learning.

3,233 citations