scispace - formally typeset
Search or ask a question
Author

Konstantin A. Lyssenko

Bio: Konstantin A. Lyssenko is an academic researcher from Moscow State University. The author has contributed to research in topics: Crystal structure & Chemistry. The author has an hindex of 44, co-authored 701 publications receiving 9885 citations. Previous affiliations of Konstantin A. Lyssenko include Russian Academy of Sciences & Plekhanov Russian University of Economics.


Papers
More filters
Journal ArticleDOI
06 Jan 2017-Science
TL;DR: The energy-minimizing electron densities for atomic species, as produced by 128 historical and modern DFT functionals, were found to become closer to the exact ones until the early 2000s, when this trend was reversed by unconstrained functionals sacrificing physical rigor for the flexibility of empirical fitting.
Abstract: The theorems at the core of density functional theory (DFT) state that the energy of a many-electron system in its ground state is fully defined by its electron density distribution. This connection is made via the exact functional for the energy, which minimizes at the exact density. For years, DFT development focused on energies, implicitly assuming that functionals producing better energies become better approximations of the exact functional. We examined the other side of the coin: the energy-minimizing electron densities for atomic species, as produced by 128 historical and modern DFT functionals. We found that these densities became closer to the exact ones, reflecting theoretical advances, until the early 2000s, when this trend was reversed by unconstrained functionals sacrificing physical rigor for the flexibility of empirical fitting.

732 citations

Journal ArticleDOI
TL;DR: The coordination polymers are thermally stable up to 180-210 °C under a nitrogen atmosphere, and their photophysical parameters are similar to those of the bulk samples so that their use as active materials in luminescent devices can be envisaged.
Abstract: The reaction of hydrated lanthanide hexafluoroacetylacetonates, [Ln(hfa)3(H2O)2], with 1,4-disubstituted benzenes afforded a new series of one-dimensional coordination polymers [Ln(hfa)3(Q)]∞, where Ln = Eu, Gd, Tb, and Lu and Q = 1,4-diacetylbenzene (acbz), 1,4-diacetoxybenzene (acetbz), or 1,4-dimethyltherephtalate (dmtph). X-ray single crystal analyses reveal [Ln(hfa)3(acbz)]∞ (Ln = Eu, Gd, Tb) consisting of zigzag polymeric chains with Ln−Ln−Ln angles equal to 128°, while the arrays are more linear in [Eu(hfa)3(acetbz)]∞ and [Eu(hfa)3(dmtph)]∞, with Ln−Ln−Ln angles of 165° and 180°, respectively. In all structures, LnIII ions are 8-coordinate and lie in distorted square-antiprismatic environments. The coordination polymers are thermally stable up to 180−210 °C under a nitrogen atmosphere. Their volatility has been tested in vacuum sublimation experiments at 200−250 °C and 10−2 Torr: the metal−organic frameworks with acetbz and dmtph can be quantitatively sublimed, while [Ln(hfa)3(acbz)]∞ undergoes the...

158 citations

Journal ArticleDOI
TL;DR: The outcome of this study is that specific interionic interactions which are usually not considered in theoretical calculations or in the interpretation of luminescent properties play an important role in the sensitization of the Eu luminescence.
Abstract: A series of lanthanide adducts with different amounts of 1,10-phenanthroline, chloride ions, and water molecules in the inner and outer coordination spheres are investigated with the aim of relating the chemical bonding pattern in the crystals to the luminescence properties of the Eu ion: [LnCl1Phen2(H2O)3]Cl2(H2O) (Ln = Eu, 1Eu; Gd, 1Gd; Tb, 1Tb), [EuCl2Phen2(H2O)2]Cl1(H2O) (2), and [EuCl2Phen1(H2O)4]Cl1(H2O) (3). The influence of inner- versus outer-sphere ligands on the Ln−X bond lengths and angles in the structure is examined. A detailed topological analysis of the electron density function derived from the X-ray diffraction data for 1Gd is performed within the frame of the “atoms in molecule” theory for the first time for a lanthanide complex. The chemical bonding pattern is interpreted in terms of net atomic charges, bond energies, and electron transfers from the ligands to the metal ion. A noteworthy finding is that the energy of extended noncovalent interactions occurring in the second coordinatio...

152 citations

Journal ArticleDOI
TL;DR: This study presents the first synthesis and characterization of a new high energy compound TTTO, which was synthesized in ten steps from 2,2-bis(tert-butyl-NNO-azoxy)acetonitrile.
Abstract: This study presents the first synthesis and characterization of a new high energy compound [1,2,3,4]tetrazino[5,6-e][1,2,3,4]tetrazine 1,3,6,8-tetraoxide (TTTO). It was synthesized in ten steps from 2,2-bis(tert-butyl-NNO-azoxy)acetonitrile. The synthetic strategy was based on the sequential closure of two 1,2,3,4-tetrazine 1,3-dioxide rings by the generation of oxodiazonium ions and their intramolecular coupling with tert-butyl-NNO-azoxy groups. The TTTO structure was confirmed by single-crystal X-ray.

115 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This critical review describes the latest developments in the sensitization of near-infrared luminescence, "soft" luminescent materials (liquid crystals, ionic liquids, ionogels), electroluminescentmaterials for organic light emitting diodes, with emphasis on white light generation, and applications in luminecent bio-sensing and bio-imaging based on time-resolved detection and multiphoton excitation.
Abstract: Recent startling interest for lanthanide luminescence is stimulated by the continuously expanding need for luminescent materials meeting the stringent requirements of telecommunication, lighting, electroluminescent devices, (bio-)analytical sensors and bio-imaging set-ups. This critical review describes the latest developments in (i) the sensitization of near-infrared luminescence, (ii) “soft” luminescent materials (liquid crystals, ionic liquids, ionogels), (iii) electroluminescent materials for organic light emitting diodes, with emphasis on white light generation, and (iv) applications in luminescent bio-sensing and bio-imaging based on time-resolved detection and multiphoton excitation (500 references).

2,895 citations

01 Feb 1995
TL;DR: In this paper, the unpolarized absorption and circular dichroism spectra of the fundamental vibrational transitions of the chiral molecule, 4-methyl-2-oxetanone, are calculated ab initio using DFT, MP2, and SCF methodologies and a 5S4P2D/3S2P (TZ2P) basis set.
Abstract: : The unpolarized absorption and circular dichroism spectra of the fundamental vibrational transitions of the chiral molecule, 4-methyl-2-oxetanone, are calculated ab initio. Harmonic force fields are obtained using Density Functional Theory (DFT), MP2, and SCF methodologies and a 5S4P2D/3S2P (TZ2P) basis set. DFT calculations use the Local Spin Density Approximation (LSDA), BLYP, and Becke3LYP (B3LYP) density functionals. Mid-IR spectra predicted using LSDA, BLYP, and B3LYP force fields are of significantly different quality, the B3LYP force field yielding spectra in clearly superior, and overall excellent, agreement with experiment. The MP2 force field yields spectra in slightly worse agreement with experiment than the B3LYP force field. The SCF force field yields spectra in poor agreement with experiment.The basis set dependence of B3LYP force fields is also explored: the 6-31G* and TZ2P basis sets give very similar results while the 3-21G basis set yields spectra in substantially worse agreements with experiment. jg

1,652 citations