scispace - formally typeset
Search or ask a question
Author

Konstantina S. Nikita

Bio: Konstantina S. Nikita is an academic researcher from National Technical University of Athens. The author has contributed to research in topics: Antenna (radio) & Motion estimation. The author has an hindex of 42, co-authored 403 publications receiving 6685 citations. Previous affiliations of Konstantina S. Nikita include National Technical University & University College London.


Papers
More filters
Journal ArticleDOI
TL;DR: The objective of this paper is to provide an overview of the challenges faced by the design of implantable patch antennas, and discuss the ways in which they have been dealt with so far in the literature.
Abstract: Biomedical telemetry permits the transmission (telemetering) of physiological signals at a distance. One of its latest developments is in the field of implantable medical devices (IMDs). Patch antennas currently are receiving significant scientific interest for integration into the implantable medical devices and radio-frequency (RF)-enabled biotelemetry, because of their high flexibility in design, conformability, and shape. The design of implantable patch antennas has gained considerable attention for dealing with issues related to biocompatibility, miniaturization, patient safety, improved quality of communication with exterior monitoring/control equipment, and insensitivity to detuning. Numerical and experimental investigations for implantable patch antennas are also highly intriguing. The objective of this paper is to provide an overview of these challenges, and discuss the ways in which they have been dealt with so far in the literature.

349 citations

Journal ArticleDOI
01 Sep 2003
TL;DR: A computer-aided diagnostic (CAD) system for the classification of hepatic lesions from computed tomography (CT) images is presented and shows that genetic algorithms result in lower dimension feature vectors and improved classification performance.
Abstract: In this paper, a computer-aided diagnostic (CAD) system for the classification of hepatic lesions from computed tomography (CT) images is presented. Regions of interest (ROIs) taken from nonenhanced CT images of normal liver, hepatic cysts, hemangiomas, and hepatocellular carcinomas have been used as input to the system. The proposed system consists of two modules: the feature extraction and the classification modules. The feature extraction module calculates the average gray level and 48 texture characteristics, which are derived from the spatial gray-level co-occurrence matrices, obtained from the ROIs. The classifier module consists of three sequentially placed feed-forward neural networks (NNs). The first NN classifies into normal or pathological liver regions. The pathological liver regions are characterized by the second NN as cyst or "other disease". The third NN classifies "other disease" into hemangioma or hepatocellular carcinoma. Three feature selection techniques have been applied to each individual NN: the sequential forward selection, the sequential floating forward selection, and a genetic algorithm for feature selection. The comparative study of the above dimensionality reduction methods shows that genetic algorithms result in lower dimension feature vectors and improved classification performance.

280 citations

Journal ArticleDOI
TL;DR: The study provides valuable insight into the design of implantable antennas, addressing the suitability of canonical against anatomical tissue models for design purposes, and assessing patient safety and link budget at various frequencies.
Abstract: We study the design and radiation performance of novel miniature antennas for integration in head-implanted medical devices operating in the MICS (402.0-405.0 MHz) and ISM (433.1-434.8, 868.0-868.6 and 902.8-928.0 MHz) bands. A parametric model of a skin-implantable antenna is proposed, and a prototype is fabricated and tested. To speed-up antenna design, a two-step methodology is suggested. This involves approximate antenna design inside a simplified geometry and further Quasi-Newton optimization inside a canonical model of the intended implantation site. Antennas are further analyzed inside an anatomical human head model. Results indicate strong dependence of the exhibited radiation performance (radiation pattern, gain, specific absorption rate and quality of communication with exterior equipment) on design parameters and operation frequency. The study provides valuable insight into the design of implantable antennas, addressing the suitability of canonical against anatomical tissue models for design purposes, and assessing patient safety and link budget at various frequencies. Finite Element and Finite Difference Time Domain numerical solvers are used at different stages of the antenna design and analysis procedures to suit specific needs. The proposed design methodology can be applied to optimize antennas for several implantation scenarios and biotelemetry applications.

273 citations

Journal ArticleDOI
01 Mar 1999
TL;DR: The registration of 26 pairs of fluoroscein angiography and indocyanine green chorioangiography images with the corresponding red-free retinal images, showed the superiority of combining genetic algorithms with the affine and bilinear transformation models.
Abstract: Retinal image registration is commonly required in order to combine the complementary information in different retinal modalities. In this paper, a new automatic scheme to register retinal images is presented and is currently tested in a clinical environment. The scheme considers the suitability and efficiency of different image transformation models and function optimization techniques, following an initial preprocessing stage. Three different transformation models-affine, bilinear and projective-as well as three optimization techniques-downhill simplex method, simulated annealing and genetic algorithms-are investigated and compared in terms of accuracy and efficiency. The registration of 26 pairs of fluoroscein angiography and indocyanine green chorioangiography images with the corresponding red-free retinal images, showed the superiority of combining genetic algorithms with the affine and bilinear transformation models. A comparative study of the proposed automatic registration scheme against the manual method, commonly used in clinical practice, is finally presented showing the advantage of the proposed automatic scheme in terms of accuracy and consistency.

213 citations

Journal ArticleDOI
TL;DR: The current status and challenges of IIMDs with wireless telemetry functionalities are reviewed to provide a comprehensive reference for scientists and developers in the field, while indicating directions for future research.
Abstract: Wireless medical telemetry permits the measurement of physiological signals at a distance through wireless technologies. One of the latest applications is in the field of implantable and ingestible medical devices (IIMDs) with integrated antennas for wireless radiofrequency (RF) communication (telemetry) with exterior monitoring/control equipment. Implantable medical devices (MDs) perform an expanding variety of diagnostic and therapeutic functions, while ingestible MDs receive significant attention in gastrointestinal endoscopy. Design of such wireless IIMD telemetry systems is highly intriguing and deals with issues related to: operation frequency selection, electronics and powering, antenna design and performance, and modeling of the wireless channel. In this paper, we attempt to comparatively review the current status and challenges of IIMDs with wireless telemetry functionalities. Full solutions of commercial IIMDs are also recorded. The objective is to provide a comprehensive reference for scientists and developers in the field, while indicating directions for future research.

188 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

01 Jan 2002

9,314 citations