scispace - formally typeset
Search or ask a question
Author

Konstantinos G. Kalogiannis

Bio: Konstantinos G. Kalogiannis is an academic researcher from Aristotle University of Thessaloniki. The author has contributed to research in topics: Pyrolysis & Lignocellulosic biomass. The author has an hindex of 27, co-authored 46 publications receiving 2641 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, thermogravimetric (TG) analyses along with thermal and catalytic fast pyrolysis experiments of cellulose, hemicellulose, lignin and their mixtures were carried out in order to investigate their pyroolysis products and whether the prediction of the pyrolys behavior of a certain lignocellulosic biomass feedstock is possible, when its content in these three constituents is known.

560 citations

Journal ArticleDOI
TL;DR: In this paper, an equilibrium, commercial diluted ZSM-5 catalyst was used as the base case, in comparison with a series of nickel (Ni) and cobalt (Co) modified variants at varying metal loading.
Abstract: The main objective of the present work was the study of different ZSM-5 catalytic formulations for the in situ upgrading of biomass pyrolysis vapors. An equilibrium, commercial diluted ZSM-5 catalyst was used as the base case, in comparison with a series of nickel (Ni) and cobalt (Co) modified variants at varying metal loading (1–10 wt.%). The product yields and the composition of the produced bio-oil were significantly affected by the use of all ZSM-5 catalytic materials, compared to the non-catalytic flash pyrolysis, producing less bio-oil but of better quality. Incorporation of transition metals (Ni or Co) in the commercial equilibrium/diluted ZSM-5 catalyst had an additional effect on the performance of the parent ZSM-5 catalyst, with respect to product yields and bio-oil composition, with the NiO modified catalysts being more reactive towards decreasing the organic phase and increasing the gaseous products, compared to the Co 3 O 4 supported catalysts. However, all the metal-modified catalysts exhibited limited reactivity towards water production, while simultaneously enhancing the production of aromatics and phenols. An interesting observation was the in situ reduction of the supported metal oxides during the pyrolysis reaction that eventually led to the formation of metallic Ni and Co species on the catalysts after reaction, which was verified by detailed XRD and HRTEM analysis of the used catalysts. The Co 3 O 4 supported ZSM-5 catalysts exhibited also a promising performance in lowering the oxygen content of the organic phase of bio-oil.

446 citations

Journal ArticleDOI
TL;DR: In-situ catalytic upgrading of biomass fast pyrolysis vapors was performed in a fixed bed bench-scale reactor at 500°C, for catalyst screening purposes, showing the most balanced performance having a moderate selectivity towards hydrocarbons, reducing undesirable compounds and producing organic liquid products at acceptable yields.

341 citations

Journal ArticleDOI
TL;DR: In this article, the authors investigated low-cost, naturally derived basic MgO materials as catalysts for the catalytic fast pyrolysis of lignocellulosic biomass as alternatives to classical acidic zeolite catalysts.
Abstract: The thermal and catalytic fast pyrolysis of biomass aims at the production of pyrolysis oil (bio-oil), which can be utilized as a source of chemicals or as a bio-crude for the production of hydrocarbon fuels. We investigated low-cost, naturally derived basic MgO materials as catalysts for the catalytic fast pyrolysis of lignocellulosic biomass as alternatives to classical acidic zeolite catalysts. The MgO catalysts were produced from natural magnesite mineral without any significant treatment besides calcination, crushing and sieving. Their structure, composition, porosity, morphology and surface properties were thoroughly examined by XRD, XRF, N 2 porosimetry, SEM, TEM, TPD-CO 2 and TPD-NH 3 . The physicochemical characteristics of the MgO catalysts depended mainly on the different production conditions (duration and temperature of calcination). Despite their negligible acidity, the MgO catalysts effectively reduced the oxygen content of the produced bio-oil and exhibited similar or even better performance compared to that of an industrial ZSM-5 catalyst formulation ( i.e. non-catalytic pyrolysis: 38.9 wt.% organic bio-oil with 38.7 wt.% O 2 ; ZSM-5 based catalyst: 20.7 wt.% organic bio-oil with 30.9 wt.% O 2 ; selected natural MgO catalysts: 25.7 wt.% organic bio-oil with 31.0 wt.% O 2 or 21.1 wt.% organic bio-oil with 28.4 wt.% O 2 ). The basic sites of the MgO catalysts favored reduction of acids and deoxygenation via ketonization and aldol condensation reactions, as indicated by the product distribution and the composition of the bio-oil. Oxygen was removed mainly via the preferred pathway of CO 2 formation, compared to CO and water as in the case of ZSM-5 zeolite. On the other hand, reaction coke slightly increased over the MgO catalysts as compared to ZSM-5; however, the MgO formed coke was oxidized/burnt at significantly lower temperatures compared to that of ZSM-5, thus enabling MgO regeneration by relatively mild calcination in air. A systematic correlation of product yields and oxygen content of bio-oil with the physicochemical properties of the MgO catalysts has been established.

189 citations

Journal ArticleDOI
TL;DR: In this article, the authors evaluated commercial ZSM-5 catalysts (diluted with a silica-alumina matrix) in the in situ upgrading of lignocellulosic biomass pyrolysis vapours and the validation of their bench-scale reactor performance in a pilot scale circulating fluidized bed (CFB), and further promoted with cobalt (Co, 5% wt%).

171 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A broad review of the state-of-the-art biomass pyrolysis research can be found in this article, where three major components (cellulose, hemicellulose and lignin) are discussed in detail.

1,613 citations

Journal ArticleDOI
TL;DR: This review provides a “beginning‐to‐end” analysis of the recent advances reported in lignin valorisation, with particular emphasis on the improved understanding of lign in's biosynthesis and structure.
Abstract: Lignin is an abundant biopolymer with a high carbon content and high aromaticity. Despite its potential as a raw material for the fuel and chemical industries, lignin remains the most poorly utilised of the lignocellulosic biopolymers. Effective valorisation of lignin requires careful fine-tuning of multiple "upstream" (i.e., lignin bioengineering, lignin isolation and "early-stage catalytic conversion of lignin") and "downstream" (i.e., lignin depolymerisation and upgrading) process stages, demanding input and understanding from a broad array of scientific disciplines. This review provides a "beginning-to-end" analysis of the recent advances reported in lignin valorisation. Particular emphasis is placed on the improved understanding of lignin's biosynthesis and structure, differences in structure and chemical bonding between native and technical lignins, emerging catalytic valorisation strategies, and the relationships between lignin structure and catalyst performance.

1,390 citations

Journal ArticleDOI
TL;DR: In this paper, a general summary of the properties of pyrolytic products and their analysis methods is given, as well as a review of the parameters that affect the process and a summary of current state of the art.
Abstract: Pyrolysis is one of the thermochemical technologies for converting biomass into energy and chemical products consisting of liquid bio-oil, solid biochar, and pyrolytic gas. Depending on the heating rate and residence time, biomass pyrolysis can be divided into three main categories slow (conventional), fast and flash pyrolysis mainly aiming at maximising either the bio-oil or biochar yields. Synthesis gas or hydrogen-rich gas can also be the target of biomass pyrolysis. Maximised gas rates can be achieved through the catalytic pyrolysis process, which is now increasingly being developed. Biomass pyrolysis generally follows a three-step mechanism comprising of dehydration, primary and secondary reactions. Dehydrogenation, depolymerisation, and fragmentation are the main competitive reactions during the primary decomposition of biomass. A number of parameters affect the biomass pyrolysis process, yields and properties of products. These include the biomass type, biomass pretreatment (physical, chemical, and biological), reaction atmosphere, temperature, heating rate and vapour residence time. This manuscript gives a general summary of the properties of the pyrolytic products and their analysis methods. Also provided are a review of the parameters that affect biomass pyrolysis and a summary of the state of industrial pyrolysis technologies.

1,379 citations

Journal ArticleDOI
TL;DR: This review presents a comprehensive description of the current pathways for recycling of polymers, via both mechanical and chemical recycling, and discusses the main challenges and some potential remedies to these recycling strategies, thus providing an academic angle as well as an applied one.

1,352 citations

Journal ArticleDOI
TL;DR: In this paper, the effect of pyrolysis process parameters on the production of biochar through biochar of biomass is discussed and a comparison between the existing techniques is established in the present work.
Abstract: Biomass is considered to have potential to be used as an alternative energy source. High carbon content present in biomass converts it into high energy biochar on thermochemical treatment. Among few well established thermochemical technologies for the treatment of biomass and biogenic waste to produce high energy char along with oil and gaseous yield, pyrolysis is the most studied and discussed technique in the recent past. A comparison between the existing techniques is established in the present work. Production of char from the biomass and biogenic wastes is reviewed and it was found that yield of the biochar depends upon the biomass composition like moisture content and presence of cellulose or lignin. Pyrolysis product distribution and their quality strongly depend upon the process parameters. Different biomasses which can be used as raw material in pyrolysis are also reviewed and categorized depending upon their source. Pyrolysis process parameters such as temperature, heating rate, residence time etc. also influence the biochar yield. This study discusses the effect of these process parameters on the production of biochar through pyrolysis of biomass.

944 citations