scispace - formally typeset
Search or ask a question
Author

Konstantinos I. Diamantaras

Bio: Konstantinos I. Diamantaras is an academic researcher from International Hellenic University. The author has contributed to research in topics: Blind signal separation & Artificial neural network. The author has an hindex of 23, co-authored 147 publications receiving 3165 citations. Previous affiliations of Konstantinos I. Diamantaras include National and Kapodistrian University of Athens & Chalmers University of Technology.


Papers
More filters
Book
01 Jan 1996
TL;DR: A review of Linear Algebra, Principal Component Analysis, and VLSI Implementation.
Abstract: A Review of Linear Algebra. Principal Component Analysis. PCA Neural Networks. Channel Noise and Hidden Units. Heteroassociative Models. Signal Enhancement Against Noise. VLSI Implementation. Appendices. Bibliography. Index.

810 citations

Journal ArticleDOI
TL;DR: A fast, flexible, generic methodology for sentiment detection out of textual snippets which express people’s opinions in different languages is proposed, which requires minimal computational resources and might have impact in real world scenarios where limited resources is the case.
Abstract: Sentiment analysis and opinion mining are valuable for extraction of useful subjective information out of text documents. These tasks have become of great importance, especially for business and marketing professionals, since online posted products and services reviews impact markets and consumers shifts. This work is motivated by the fact that automating retrieval and detection of sentiments expressed for certain products and services embeds complex processes and pose research challenges, due to the textual phenomena and the language specific expression variations. This paper proposes a fast, flexible, generic methodology for sentiment detection out of textual snippets which express people’s opinions in different languages. The proposed methodology adopts a machine learning approach with which textual documents are represented by vectors and are used for training a polarity classification model. Several documents’ vector representation approaches have been studied, including lexicon-based, word embedding-based and hybrid vectorizations. The competence of these feature representations for the sentiment classification task is assessed through experiments on four datasets containing online user reviews in both Greek and English languages, in order to represent high and weak inflection language groups. The proposed methodology requires minimal computational resources, thus, it might have impact in real world scenarios where limited resources is the case.

281 citations

Journal ArticleDOI
TL;DR: A comparative study on the most popular machine learning methods applied to the challenging problem of customer churning prediction in the telecommunications industry demonstrates clear superiority of the boosted versions of the models against the plain (non-boosted) versions.

256 citations

Journal ArticleDOI
01 Oct 1998
TL;DR: A generalised approach to the classification problems in n-dimensional spaces will be presented using among others NN, radial basis function networks (RBFN) and non-linear principal component analysis (NLPCA) techniques.
Abstract: The most widely used signal in clinical practice is the ECG. ECG conveys information regarding the electrical function of the heart, by altering the shape of its constituent waves, namely the P, QRS, and T waves. Thus, the required tasks of ECG processing are the reliable recognition of these waves, and the accurate measurement of clinically important parameters measured from the temporal distribution of the ECG constituent waves. In this paper, we shall review some current trends on ECG pattern recognition. In particular, we shall review non-linear transformations of the ECG, the use of principal component analysis (linear and non-linear), ways to map the transformed data into n-dimensional spaces, and the use of neural networks (NN) based techniques for ECG pattern recognition and classification. The problems we shall deal with are the QRS/PVC recognition and classification, the recognition of ischemic beats and episodes, and the detection of atrial fibrillation. Finally, a generalised approach to the classification problems in n-dimensional spaces will be presented using among others NN, radial basis function networks (RBFN) and non-linear principal component analysis (NLPCA) techniques. The performance measures of the sensitivity and specificity of these algorithms will also be presented using as training and testing data sets from the MIT-BIH and the European ST-T databases.

240 citations

Journal ArticleDOI
TL;DR: A neural network model (APEX) for multiple principal component extraction that is applicable to the constrained PCA problem where the signal variance is maximized under external orthogonality constraints and the exponential convergence of the network is formally proved.
Abstract: The authors describe a neural network model (APEX) for multiple principal component extraction. All the synaptic weights of the model are trained with the normalized Hebbian learning rule. The network structure features a hierarchical set of lateral connections among the output units which serve the purpose of weight orthogonalization. This structure also allows the size of the model to grow or shrink without need for retraining the old units. The exponential convergence of the network is formally proved while there is significant performance improvement over previous methods. By establishing an important connection with the recursive least squares algorithm they have been able to provide the optimal size for the learning step-size parameter which leads to a significant improvement in the convergence speed. This is in contrast with previous neural PCA models which lack such numerical advantages. The APEX algorithm is also parallelizable allowing the concurrent extraction of multiple principal components. Furthermore, APEX is shown to be applicable to the constrained PCA problem where the signal variance is maximized under external orthogonality constraints. They then study various principal component analysis (PCA) applications that might benefit from the adaptive solution offered by APEX. In particular they discuss applications in spectral estimation, signal detection and image compression and filtering, while other application domains are also briefly outlined. >

180 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis.
Abstract: Machine Learning is the study of methods for programming computers to learn. Computers are applied to a wide range of tasks, and for most of these it is relatively easy for programmers to design and implement the necessary software. However, there are many tasks for which this is difficult or impossible. These can be divided into four general categories. First, there are problems for which there exist no human experts. For example, in modern automated manufacturing facilities, there is a need to predict machine failures before they occur by analyzing sensor readings. Because the machines are new, there are no human experts who can be interviewed by a programmer to provide the knowledge necessary to build a computer system. A machine learning system can study recorded data and subsequent machine failures and learn prediction rules. Second, there are problems where human experts exist, but where they are unable to explain their expertise. This is the case in many perceptual tasks, such as speech recognition, hand-writing recognition, and natural language understanding. Virtually all humans exhibit expert-level abilities on these tasks, but none of them can describe the detailed steps that they follow as they perform them. Fortunately, humans can provide machines with examples of the inputs and correct outputs for these tasks, so machine learning algorithms can learn to map the inputs to the outputs. Third, there are problems where phenomena are changing rapidly. In finance, for example, people would like to predict the future behavior of the stock market, of consumer purchases, or of exchange rates. These behaviors change frequently, so that even if a programmer could construct a good predictive computer program, it would need to be rewritten frequently. A learning program can relieve the programmer of this burden by constantly modifying and tuning a set of learned prediction rules. Fourth, there are applications that need to be customized for each computer user separately. Consider, for example, a program to filter unwanted electronic mail messages. Different users will need different filters. It is unreasonable to expect each user to program his or her own rules, and it is infeasible to provide every user with a software engineer to keep the rules up-to-date. A machine learning system can learn which mail messages the user rejects and maintain the filtering rules automatically. Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis. Statistics focuses on understanding the phenomena that have generated the data, often with the goal of testing different hypotheses about those phenomena. Data mining seeks to find patterns in the data that are understandable by people. Psychological studies of human learning aspire to understand the mechanisms underlying the various learning behaviors exhibited by people (concept learning, skill acquisition, strategy change, etc.).

13,246 citations

Journal ArticleDOI
TL;DR: A new method for performing a nonlinear form of principal component analysis by the use of integral operator kernel functions is proposed and experimental results on polynomial feature extraction for pattern recognition are presented.
Abstract: A new method for performing a nonlinear form of principal component analysis is proposed. By the use of integral operator kernel functions, one can efficiently compute principal components in high-dimensional feature spaces, related to input space by some nonlinear map—for instance, the space of all possible five-pixel products in 16 × 16 images. We give the derivation of the method and present experimental results on polynomial feature extraction for pattern recognition.

8,175 citations

Journal ArticleDOI
TL;DR: Principal component analysis (PCA) as discussed by the authors is a multivariate technique that analyzes a data table in which observations are described by several inter-correlated quantitative dependent variables, and its goal is to extract the important information from the table, to represent it as a set of new orthogonal variables called principal components, and display the pattern of similarity of the observations and of the variables as points in maps.
Abstract: Principal component analysis PCA is a multivariate technique that analyzes a data table in which observations are described by several inter-correlated quantitative dependent variables. Its goal is to extract the important information from the table, to represent it as a set of new orthogonal variables called principal components, and to display the pattern of similarity of the observations and of the variables as points in maps. The quality of the PCA model can be evaluated using cross-validation techniques such as the bootstrap and the jackknife. PCA can be generalized as correspondence analysis CA in order to handle qualitative variables and as multiple factor analysis MFA in order to handle heterogeneous sets of variables. Mathematically, PCA depends upon the eigen-decomposition of positive semi-definite matrices and upon the singular value decomposition SVD of rectangular matrices. Copyright © 2010 John Wiley & Sons, Inc.

6,398 citations

Journal ArticleDOI
TL;DR: The basic ideas of PCA are introduced, discussing what it can and cannot do, and some variants of the technique have been developed that are tailored to various different data types and structures.
Abstract: Large datasets are increasingly common and are often difficult to interpret. Principal component analysis (PCA) is a technique for reducing the dimensionality of such datasets, increasing interpretability but at the same time minimizing information loss. It does so by creating new uncorrelated variables that successively maximize variance. Finding such new variables, the principal components, reduces to solving an eigenvalue/eigenvector problem, and the new variables are defined by the dataset at hand, not a priori , hence making PCA an adaptive data analysis technique. It is adaptive in another sense too, since variants of the technique have been developed that are tailored to various different data types and structures. This article will begin by introducing the basic ideas of PCA, discussing what it can and cannot do. It will then describe some variants of PCA and their application.

4,289 citations

Journal ArticleDOI
TL;DR: This paper provides an introduction to support vector machines, kernel Fisher discriminant analysis, and kernel principal component analysis, as examples for successful kernel-based learning methods.
Abstract: This paper provides an introduction to support vector machines, kernel Fisher discriminant analysis, and kernel principal component analysis, as examples for successful kernel-based learning methods. We first give a short background about Vapnik-Chervonenkis theory and kernel feature spaces and then proceed to kernel based learning in supervised and unsupervised scenarios including practical and algorithmic considerations. We illustrate the usefulness of kernel algorithms by discussing applications such as optical character recognition and DNA analysis.

3,566 citations