scispace - formally typeset
Search or ask a question
Author

Kostya S. Novoselov

Bio: Kostya S. Novoselov is an academic researcher from National University of Singapore. The author has contributed to research in topics: Graphene & Bilayer graphene. The author has an hindex of 115, co-authored 392 publications receiving 207392 citations. Previous affiliations of Kostya S. Novoselov include University of Manchester & Russian Academy of Sciences.


Papers
More filters
Journal ArticleDOI
TL;DR: It is shown that such heterostructures can be assembled from chemically exfoliated 2D crystals, allowing for low-cost and scalable methods to be used in device fabrication.
Abstract: The new paradigm of heterostructures based on two-dimensional (2D) atomic crystals has already led to the observation of exciting physical phenomena and creation of novel devices. The possibility of combining layers of different 2D materials in one stack allows unprecedented control over the electronic and optical properties of the resulting material. Still, the current method of mechanical transfer of individual 2D crystals, though allowing exceptional control over the quality of such structures and interfaces, is not scalable. Here we show that such heterostructures can be assembled from chemically exfoliated 2D crystals, allowing for low-cost and scalable methods to be used in the device fabrication.

150 citations

Journal ArticleDOI
TL;DR: In this article, a 10-fold PL lifetime shortening was achieved, as a consequence of Purcell enhancement of the spontaneous emission rate of photoluminescence (PL).
Abstract: Integration of quasi-two-dimensional (2D) films of metal–chalcogenides in optical microcavities permits new photonic applications of these materials. Here we present tunable microcavities with monolayer MoS2 or few monolayer GaSe films. We observe significant modification of spectral and temporal properties of photoluminescence (PL): PL is emitted in spectrally narrow and wavelength-tunable cavity modes with quality factors up to 7400; a 10-fold PL lifetime shortening is achieved, a consequence of Purcell enhancement of the spontaneous emission rate.

148 citations

Journal ArticleDOI
07 Sep 2000-Nature
TL;DR: The amount of flux introduced by individual vortices in a superconducting film is measured, finding that the flux always differs substantially from φ0, and ‘negative vortice’ are observed, whose penetration leads to the expulsion of magnetic field.
Abstract: As first pointed out by Bardeen and Ginzburg in the early sixties1,2, the amount of magnetic flux carried by vortices in superconducting materials depends on their distance from the sample edge, and can be smaller than one flux quantum, φ0 = h/2e (where h is Planck's constant and e is the electronic charge). In bulk superconductors, this reduction of flux becomes negligible at sub-micrometre distances from the edge, but in thin films the effect may survive much farther into the material3,4. But the effect has not been observed experimentally, and it is often assumed that magnetic field enters type II superconductors in units of φ0. Here we measure the amount of flux introduced by individual vortices in a superconducting film, finding that the flux always differs substantially from φ0. We have observed vortices that carry as little as 0.001φ0, as well as ‘negative vortices’, whose penetration leads to the expulsion of magnetic field. We distinguish two phenomena responsible for non-quantized flux penetration: the finite-size effect1,2,3,4 and a nonlinear screening of the magnetic field due to the presence of a surface barrier. The latter effect has not been considered previously, but is likely to cause non-quantized penetration in most cases.

142 citations

Journal ArticleDOI
TL;DR: In this article, the authors look into the possible routes for exploration of this new field that presents new venues in basic science as well as in applications, and present a new class of materials that can fulfill these needs.
Abstract: Human progress and development has always been marked by breakthroughs in the control of materials. Since pre-historic times, through the stone, bronze, and iron ages, humans have exploited their environment for materials that can be either used directly or can be modified for their benefit, to make their life more comfortable, productive, or to give them military advantage. One age replaces another when the material that is the basis for its sustainability runs its course and is replaced by another material which presents more qualities. Multi-tasking, speed, versatility, and flexibility are at the heart of modern technology. In recent years a new class of materials that can fulfill these needs have emerged: two-dimensional (2D) crystals. Graphene is probably the most famous example, but there are numerous other examples with amazing electronic and structural properties. In this paper we look into the possible routes for exploration of this new field that presents new venues in basic science as well as in applications.

139 citations

Journal ArticleDOI
TL;DR: It is demonstrated that layered transition metal dichalcogenides (TMDCs) provide an answer to this quest owing to their fundamental differences between intralayer strong covalent bonding and weak interlayer van der Waals interaction enabling an avenue for on-chip next-generation photonics.
Abstract: Large optical anisotropy observed in a broad spectral range is of paramount importance for efficient light manipulation in countless devices. Although a giant anisotropy has been recently observed in the mid-infrared wavelength range, for visible and near-infrared spectral intervals, the problem remains acute with the highest reported birefringence values of 0.8 in BaTiS3 and h-BN crystals. This issue inspired an intensive search for giant optical anisotropy among natural and artificial materials. Here, we demonstrate that layered transition metal dichalcogenides (TMDCs) provide an answer to this quest owing to their fundamental differences between intralayer strong covalent bonding and weak interlayer van der Waals interaction. To do this, we made correlative far- and near-field characterizations validated by first-principle calculations that reveal a huge birefringence of 1.5 in the infrared and 3 in the visible light for MoS2. Our findings demonstrate that this remarkable anisotropy allows for tackling the diffraction limit enabling an avenue for on-chip next-generation photonics. Optical anisotropy in a broad spectral range is pivotal to efficient light manipulation. Here, the authors measure a birefringence of 1.5 in the infrared range and 3 in the visible light for MoS2.

136 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Owing to its unusual electronic spectrum, graphene has led to the emergence of a new paradigm of 'relativistic' condensed-matter physics, where quantum relativistic phenomena can now be mimicked and tested in table-top experiments.
Abstract: Graphene is a rapidly rising star on the horizon of materials science and condensed-matter physics. This strictly two-dimensional material exhibits exceptionally high crystal and electronic quality, and, despite its short history, has already revealed a cornucopia of new physics and potential applications, which are briefly discussed here. Whereas one can be certain of the realness of applications only when commercial products appear, graphene no longer requires any further proof of its importance in terms of fundamental physics. Owing to its unusual electronic spectrum, graphene has led to the emergence of a new paradigm of 'relativistic' condensed-matter physics, where quantum relativistic phenomena, some of which are unobservable in high-energy physics, can now be mimicked and tested in table-top experiments. More generally, graphene represents a conceptually new class of materials that are only one atom thick, and, on this basis, offers new inroads into low-dimensional physics that has never ceased to surprise and continues to provide a fertile ground for applications.

35,293 citations

01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

Journal ArticleDOI
TL;DR: In this paper, the basic theoretical aspects of graphene, a one-atom-thick allotrope of carbon, with unusual two-dimensional Dirac-like electronic excitations, are discussed.
Abstract: This article reviews the basic theoretical aspects of graphene, a one-atom-thick allotrope of carbon, with unusual two-dimensional Dirac-like electronic excitations. The Dirac electrons can be controlled by application of external electric and magnetic fields, or by altering sample geometry and/or topology. The Dirac electrons behave in unusual ways in tunneling, confinement, and the integer quantum Hall effect. The electronic properties of graphene stacks are discussed and vary with stacking order and number of layers. Edge (surface) states in graphene depend on the edge termination (zigzag or armchair) and affect the physical properties of nanoribbons. Different types of disorder modify the Dirac equation leading to unusual spectroscopic and transport properties. The effects of electron-electron and electron-phonon interactions in single layer and multilayer graphene are also presented.

20,824 citations

Journal ArticleDOI
10 Nov 2005-Nature
TL;DR: This study reports an experimental study of a condensed-matter system (graphene, a single atomic layer of carbon) in which electron transport is essentially governed by Dirac's (relativistic) equation and reveals a variety of unusual phenomena that are characteristic of two-dimensional Dirac fermions.
Abstract: Quantum electrodynamics (resulting from the merger of quantum mechanics and relativity theory) has provided a clear understanding of phenomena ranging from particle physics to cosmology and from astrophysics to quantum chemistry. The ideas underlying quantum electrodynamics also influence the theory of condensed matter, but quantum relativistic effects are usually minute in the known experimental systems that can be described accurately by the non-relativistic Schrodinger equation. Here we report an experimental study of a condensed-matter system (graphene, a single atomic layer of carbon) in which electron transport is essentially governed by Dirac's (relativistic) equation. The charge carriers in graphene mimic relativistic particles with zero rest mass and have an effective 'speed of light' c* approximately 10(6) m s(-1). Our study reveals a variety of unusual phenomena that are characteristic of two-dimensional Dirac fermions. In particular we have observed the following: first, graphene's conductivity never falls below a minimum value corresponding to the quantum unit of conductance, even when concentrations of charge carriers tend to zero; second, the integer quantum Hall effect in graphene is anomalous in that it occurs at half-integer filling factors; and third, the cyclotron mass m(c) of massless carriers in graphene is described by E = m(c)c*2. This two-dimensional system is not only interesting in itself but also allows access to the subtle and rich physics of quantum electrodynamics in a bench-top experiment.

18,958 citations