scispace - formally typeset
Search or ask a question
Author

Kostya S. Novoselov

Bio: Kostya S. Novoselov is an academic researcher from National University of Singapore. The author has contributed to research in topics: Graphene & Bilayer graphene. The author has an hindex of 115, co-authored 392 publications receiving 207392 citations. Previous affiliations of Kostya S. Novoselov include University of Manchester & Russian Academy of Sciences.


Papers
More filters
Posted Content
TL;DR: Moiré superlattices generated by twisted insulating crystals of hexagonal boron nitride are shown to have a ferroelectric-like character, attributed to strain-induced polarized dipoles formed by pairs of interfacial bor on and nitrogen atoms that create bilayer-thick ferro electric domains.
Abstract: When two-dimensional crystals are brought into close proximity, their interaction results in strong reconstruction of electronic spectrum and local crystal structure. Such reconstruction strongly depends on the twist angle between the two crystals and has received growing attention due to new interesting electronic and optical properties that arise in graphene and transitional metal dichalcogenides. Similarly, novel and potentially useful properties are expected to appear in insulating crystals. Here we study two insulating crystals of hexagonal boron nitride (hBN) stacked at a small twist angle. Using electrostatic force microscopy, we observe ferroelectric-like domains arranged in triangular superlattices with a large surface potential that is independent on the size and orientation of the domains as well as the thickness of the twisted hBN crystals. The observation is attributed to interfacial elastic deformations that result in domains with a large density of out-of-plane polarized dipoles formed by pairs of boron and nitrogen atoms belonging to the opposite interfacial surfaces. This effectively creates a bilayer-thick ferroelectric with oppositely polarized (BN and NB) dipoles in neighbouring domains, in agreement with our modelling. The demonstrated electrostatic domains and their superlattices offer many new possibilities in designing novel van der Waals heterostructures.

77 citations

Journal ArticleDOI
TL;DR: This work presents the first Raman spectroscopic study of Bernal bilayer graphene flakes under uniaxial tension, providing an alternative route to induce the formation of a band gap.
Abstract: We present the first Raman spectroscopic study of Bernal bilayer graphene flakes under uniaxial tension. Apart from a purely mechanical behavior in flake regions where both layers are strained evenly, certain effects stem from inhomogeneous stress distribution across the layers. These phenomena such as the removal of inversion symmetry in bilayer graphene may have important implications in the band gap engineering, providing an alternative route to induce the formation of a band gap.

76 citations

Journal ArticleDOI
TL;DR: It is shown that unlike buckling in air, the presence of the polymer constraint results in graphene buckling at a fixed value of strain with an estimated wrinkle wavelength of the order of 1–2 nm.
Abstract: Exfoliated monolayer graphene flakes were embedded in a polymer matrix and loaded under axial compression. By monitoring the shifts of the 2D Raman phonons of rectangular flakes of various sizes under load, the critical strain to failure was determined. Prior to loading care was taken for the examined area of the flake to be free of residual stresses. The critical strain values for first failure were found to be independent of flake size at a mean value of –0.60% corresponding to a yield stress up to -6 GPa. By combining Euler mechanics with a Winkler approach, we show that unlike buckling in air, the presence of the polymer constraint results in graphene buckling at a fixed value of strain with an estimated wrinkle wavelength of the order of 1–2 nm. These results were compared with DFT computations performed on analogue coronene/PMMA oligomers and a reasonable agreement was obtained.

76 citations

Journal ArticleDOI
TL;DR: It is argued, using a numerical analysis, that the hallmark features of the previously inferred many-body insulating state can be explained by scattering on boundaries between domains with different stacking order (AB and BA).
Abstract: Pristine bilayer graphene behaves in some instances as an insulator with a transport gap of a few millielectronvolts. This behavior has been interpreted as the result of an intrinsic electronic ins...

74 citations

01 May 2009
TL;DR: In this article, the constitutive relation of graphene and probe the physics of its optical phonons by studying its Raman spectrum as a function of uniaxial strain was uncovered.
Abstract: We uncover the constitutive relation of graphene and probe the physics of its optical phonons by studying its Raman spectrum as a function of uniaxial strain. We find that the doubly degenerate E(2g) optical mode splits in two components: one polarized along the strain and the other perpendicular. This splits the G peak into two bands, which we call G(+) and G(-), by analogy with the effect of curvature on the nanotube G peak. Both peaks redshift with increasing strain and their splitting increases, in excellent agreement with first-principles calculations. Their relative intensities are found to depend on light polarization, which provides a useful tool to probe the graphene crystallographic orientation with respect to the strain. The 2D and 2D(') bands also redshift but do not split for small strains. We study the Gruneisen parameters for the phonons responsible for the G, D, and D(') peaks. These can be used to measure the amount of uniaxial or biaxial strain, providing a fundamental tool for nanoelectronics, where strain monitoring is of paramount importance.

74 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Owing to its unusual electronic spectrum, graphene has led to the emergence of a new paradigm of 'relativistic' condensed-matter physics, where quantum relativistic phenomena can now be mimicked and tested in table-top experiments.
Abstract: Graphene is a rapidly rising star on the horizon of materials science and condensed-matter physics. This strictly two-dimensional material exhibits exceptionally high crystal and electronic quality, and, despite its short history, has already revealed a cornucopia of new physics and potential applications, which are briefly discussed here. Whereas one can be certain of the realness of applications only when commercial products appear, graphene no longer requires any further proof of its importance in terms of fundamental physics. Owing to its unusual electronic spectrum, graphene has led to the emergence of a new paradigm of 'relativistic' condensed-matter physics, where quantum relativistic phenomena, some of which are unobservable in high-energy physics, can now be mimicked and tested in table-top experiments. More generally, graphene represents a conceptually new class of materials that are only one atom thick, and, on this basis, offers new inroads into low-dimensional physics that has never ceased to surprise and continues to provide a fertile ground for applications.

35,293 citations

01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

Journal ArticleDOI
TL;DR: In this paper, the basic theoretical aspects of graphene, a one-atom-thick allotrope of carbon, with unusual two-dimensional Dirac-like electronic excitations, are discussed.
Abstract: This article reviews the basic theoretical aspects of graphene, a one-atom-thick allotrope of carbon, with unusual two-dimensional Dirac-like electronic excitations. The Dirac electrons can be controlled by application of external electric and magnetic fields, or by altering sample geometry and/or topology. The Dirac electrons behave in unusual ways in tunneling, confinement, and the integer quantum Hall effect. The electronic properties of graphene stacks are discussed and vary with stacking order and number of layers. Edge (surface) states in graphene depend on the edge termination (zigzag or armchair) and affect the physical properties of nanoribbons. Different types of disorder modify the Dirac equation leading to unusual spectroscopic and transport properties. The effects of electron-electron and electron-phonon interactions in single layer and multilayer graphene are also presented.

20,824 citations

Journal ArticleDOI
10 Nov 2005-Nature
TL;DR: This study reports an experimental study of a condensed-matter system (graphene, a single atomic layer of carbon) in which electron transport is essentially governed by Dirac's (relativistic) equation and reveals a variety of unusual phenomena that are characteristic of two-dimensional Dirac fermions.
Abstract: Quantum electrodynamics (resulting from the merger of quantum mechanics and relativity theory) has provided a clear understanding of phenomena ranging from particle physics to cosmology and from astrophysics to quantum chemistry. The ideas underlying quantum electrodynamics also influence the theory of condensed matter, but quantum relativistic effects are usually minute in the known experimental systems that can be described accurately by the non-relativistic Schrodinger equation. Here we report an experimental study of a condensed-matter system (graphene, a single atomic layer of carbon) in which electron transport is essentially governed by Dirac's (relativistic) equation. The charge carriers in graphene mimic relativistic particles with zero rest mass and have an effective 'speed of light' c* approximately 10(6) m s(-1). Our study reveals a variety of unusual phenomena that are characteristic of two-dimensional Dirac fermions. In particular we have observed the following: first, graphene's conductivity never falls below a minimum value corresponding to the quantum unit of conductance, even when concentrations of charge carriers tend to zero; second, the integer quantum Hall effect in graphene is anomalous in that it occurs at half-integer filling factors; and third, the cyclotron mass m(c) of massless carriers in graphene is described by E = m(c)c*2. This two-dimensional system is not only interesting in itself but also allows access to the subtle and rich physics of quantum electrodynamics in a bench-top experiment.

18,958 citations