scispace - formally typeset
Search or ask a question
Author

Kostya S. Novoselov

Bio: Kostya S. Novoselov is an academic researcher from National University of Singapore. The author has contributed to research in topics: Graphene & Bilayer graphene. The author has an hindex of 115, co-authored 392 publications receiving 207392 citations. Previous affiliations of Kostya S. Novoselov include University of Manchester & Russian Academy of Sciences.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors outline the principles of how scanning probe lithography on graphene is performed and show several examples of structures etched in graphene using this technique, including an example of a nanoelectronic device.
Abstract: In this paper, we want to outline the principles of how scanning probe lithography on graphene is performed. We will show several examples of structures etched in graphene using this technique, including an example of a nanoelectronic device. In the last part, we present data regarding the oxidation kinetics when performing scanning probe lithography on graphite (HOPG). [GRAPHICS] Two lines oxidized in graphene using scanning probe lithography. The left line (indicated by the arrow) is only 30 nm wide, indicating that this technique has good enough resolution to create nanoelectronic device structures. (C) 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

33 citations

Journal ArticleDOI
TL;DR: It is shown that the van der Waals ferromagnetic CrCl 3 can host merons and anti-merons, and the dynamics and interactions of these quasi-particles are explored, pushing the boundary to what is currently known about non-trivial spin structures in 2D magnets.
Abstract: Merons are nontrivial topological spin textures highly relevant for many phenomena in solid state physics. Despite their importance, direct observation of such vortex quasiparticles is scarce and has been limited to a few complex materials. Here we show the emergence of merons and antimerons in recently discovered two-dimensional (2D) CrCl3 at zero magnetic field. We show their entire evolution from pair creation, their diffusion over metastable domain walls, and collision leading to large magnetic monodomains. Both quasiparticles are stabilized spontaneously during cooling at regions where in-plane magnetic frustration takes place. Their dynamics is determined by the interplay between the strong in-plane dipolar interactions and the weak out-of-plane magnetic anisotropy stabilising a vortex core within a radius of 8-10 nm. Our results push the boundary to what is currently known about non-trivial spin structures in 2D magnets and open exciting opportunities to control magnetic domains via topological quasiparticles.

33 citations

Journal ArticleDOI
TL;DR: In this article, it was shown that electron-electron umklapp scattering dominates the transport properties of graphene-on-boron-nitride superlattices over a wide range of temperature and carrier density.
Abstract: In electronic transport, umklapp processes play a fundamental role as the only intrinsic mechanism that allows electrons to transfer momentum to the crystal lattice and, therefore, provide a finite electrical resistance in pure metals1,2. However, umklapp scattering is difficult to demonstrate in experiment, as it is easily obscured by other dissipation mechanisms1–6. Here we show that electron–electron umklapp scattering dominates the transport properties of graphene-on-boron-nitride superlattices over a wide range of temperature and carrier density. The umklapp processes cause giant excess resistivity that rapidly increases with increasing superlattice period and are responsible for deterioration of the room-temperature mobility by more than an order of magnitude as compared to standard, non-superlattice graphene devices. The umklapp scattering exhibits a quadratic temperature dependence accompanied by a pronounced electron–hole asymmetry with the effect being much stronger for holes than electrons. In addition to being of fundamental interest, our results have direct implications for design of possible electronic devices based on heterostructures featuring superlattices. An increase in electrical resistance caused by the fundamental process of electrons scattering off of each other (umklapp scattering) is observed in graphene superlattice devices. This will limit the electrical properties of such devices.

33 citations

Journal ArticleDOI
TL;DR: Graphene with high crystallinity, low oxidation degree, uniform size distribution and few layers is proposed with programed potential modulation strategies to balance the ion intercalation/deintercalation, surface tailoring and bubbling dispersion processes in the electrochemical exfoliation of graphite.

33 citations

Journal ArticleDOI
TL;DR: Graphene and other 2DM could not only play a vital role for tackling the ongoing COVID‐19 pandemic but also provide technology platforms and tools for the protection, detection and monitoring of future viral diseases.
Abstract: The COVID-19 pandemic highlighted the need for rapid tools and technologies to combat highly infectious viruses. The excellent electrical, mechanical and other functional properties of graphene and graphene-like 2D materials (2DM) can be utilized to develop novel and innovative devices to tackle COVID-19 and future pandemics. Here, the authors outline how graphene and other 2DM-based technologies can be used for the detection, protection, and continuous monitoring of infectious diseases including COVID-19. The authors highlight the potential of 2DM-based biosensors in rapid testing and tracing of viruses to enable isolation of infected patients, and stop the spread of viruses. The possibilities of graphene-based wearable devices are discussed for continuous monitoring of COVID-19 symptoms. The authors also provide an overview of the personal protective equipment, and potential filtration mechanisms to separate, destroy or degrade highly infectious viruses, and the potential of graphene and other 2DM to increase their efficiency, and enhance functional and mechanical properties. Graphene and other 2DM could not only play a vital role for tackling the ongoing COVID-19 pandemic but also provide technology platforms and tools for the protection, detection and monitoring of future viral diseases.

32 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Owing to its unusual electronic spectrum, graphene has led to the emergence of a new paradigm of 'relativistic' condensed-matter physics, where quantum relativistic phenomena can now be mimicked and tested in table-top experiments.
Abstract: Graphene is a rapidly rising star on the horizon of materials science and condensed-matter physics. This strictly two-dimensional material exhibits exceptionally high crystal and electronic quality, and, despite its short history, has already revealed a cornucopia of new physics and potential applications, which are briefly discussed here. Whereas one can be certain of the realness of applications only when commercial products appear, graphene no longer requires any further proof of its importance in terms of fundamental physics. Owing to its unusual electronic spectrum, graphene has led to the emergence of a new paradigm of 'relativistic' condensed-matter physics, where quantum relativistic phenomena, some of which are unobservable in high-energy physics, can now be mimicked and tested in table-top experiments. More generally, graphene represents a conceptually new class of materials that are only one atom thick, and, on this basis, offers new inroads into low-dimensional physics that has never ceased to surprise and continues to provide a fertile ground for applications.

35,293 citations

01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

Journal ArticleDOI
TL;DR: In this paper, the basic theoretical aspects of graphene, a one-atom-thick allotrope of carbon, with unusual two-dimensional Dirac-like electronic excitations, are discussed.
Abstract: This article reviews the basic theoretical aspects of graphene, a one-atom-thick allotrope of carbon, with unusual two-dimensional Dirac-like electronic excitations. The Dirac electrons can be controlled by application of external electric and magnetic fields, or by altering sample geometry and/or topology. The Dirac electrons behave in unusual ways in tunneling, confinement, and the integer quantum Hall effect. The electronic properties of graphene stacks are discussed and vary with stacking order and number of layers. Edge (surface) states in graphene depend on the edge termination (zigzag or armchair) and affect the physical properties of nanoribbons. Different types of disorder modify the Dirac equation leading to unusual spectroscopic and transport properties. The effects of electron-electron and electron-phonon interactions in single layer and multilayer graphene are also presented.

20,824 citations

Journal ArticleDOI
10 Nov 2005-Nature
TL;DR: This study reports an experimental study of a condensed-matter system (graphene, a single atomic layer of carbon) in which electron transport is essentially governed by Dirac's (relativistic) equation and reveals a variety of unusual phenomena that are characteristic of two-dimensional Dirac fermions.
Abstract: Quantum electrodynamics (resulting from the merger of quantum mechanics and relativity theory) has provided a clear understanding of phenomena ranging from particle physics to cosmology and from astrophysics to quantum chemistry. The ideas underlying quantum electrodynamics also influence the theory of condensed matter, but quantum relativistic effects are usually minute in the known experimental systems that can be described accurately by the non-relativistic Schrodinger equation. Here we report an experimental study of a condensed-matter system (graphene, a single atomic layer of carbon) in which electron transport is essentially governed by Dirac's (relativistic) equation. The charge carriers in graphene mimic relativistic particles with zero rest mass and have an effective 'speed of light' c* approximately 10(6) m s(-1). Our study reveals a variety of unusual phenomena that are characteristic of two-dimensional Dirac fermions. In particular we have observed the following: first, graphene's conductivity never falls below a minimum value corresponding to the quantum unit of conductance, even when concentrations of charge carriers tend to zero; second, the integer quantum Hall effect in graphene is anomalous in that it occurs at half-integer filling factors; and third, the cyclotron mass m(c) of massless carriers in graphene is described by E = m(c)c*2. This two-dimensional system is not only interesting in itself but also allows access to the subtle and rich physics of quantum electrodynamics in a bench-top experiment.

18,958 citations