scispace - formally typeset
Search or ask a question
Author

Kostya S. Novoselov

Bio: Kostya S. Novoselov is an academic researcher from National University of Singapore. The author has contributed to research in topics: Graphene & Bilayer graphene. The author has an hindex of 115, co-authored 392 publications receiving 207392 citations. Previous affiliations of Kostya S. Novoselov include University of Manchester & Russian Academy of Sciences.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, mesoscopic Hall sensors were used for accurate magnetization studies of sub-micron or nanometer-sized samples over a wide temperature range, and they demonstrated the capabilities of new micromagnetometers by measuring nm-scale movements of individual domain walls in a ferromagnetic magnet.
Abstract: We report on mesoscopic Hall sensors allowing accurate magnetization studies of submicron or nanometer-sized samples over a wide temperature range. Even at 300 K, the probes can reliably resolve local changes in dc field of ≈ 1 G with spatial resolution of ≈ 1 μm, which corresponds to a flux sensitivity of less than 0.1 ϕ0 (ϕ0=h/e is a flux quantum). The resolution increases 100 times at temperatures below 80 K. The capabilities of new micromagnetometers are demonstrated by measuring nm-scale movements of individual domain walls in a ferromagnet.

2 citations

Journal ArticleDOI
TL;DR: In this paper , a graphene-confined ultrafast radiant heating (GCURH) method was developed for the synthesis of highloading metal cluster catalysts in microseconds, where the impermeable and flexible graphene acts as a diffusion-constrained nanoreactor for high-temperature reactions.
Abstract: ABSTRACT Thermally activated ultrafast diffusion, collision and combination of metal atoms comprise the fundamental processes of synthesizing burgeoning subnanometer metal clusters for diverse applications. However, so far, no method has allowed the kinetically controllable synthesis of subnanometer metal clusters without compromising metal loading. Herein, we have developed, for the first time, a graphene-confined ultrafast radiant heating (GCURH) method for the synthesis of high-loading metal cluster catalysts in microseconds, where the impermeable and flexible graphene acts as a diffusion-constrained nanoreactor for high-temperature reactions. Originating from graphene-mediated ultrafast and efficient laser-to-thermal conversion, the GCURH method is capable of providing a record-high heating and cooling rate of ∼109°C/s and a peak temperature above 2000°C, and the diffusion of thermally activated atoms is spatially limited within the confinement of the graphene nanoreactor. As a result, due to the kinetics-dominant and diffusion-constrained condition provided by GCURH, subnanometer Co cluster catalysts with high metal loading up to 27.1 wt% have been synthesized by pyrolyzing a Co-based metal-organic framework (MOF) in microseconds, representing one of the highest size-loading combinations and the quickest rate for MOF pyrolysis in the reported literature. The obtained Co cluster catalyst not only exhibits an extraordinary activity similar to that of most modern multicomponent noble metal counterparts in the electrocatalytic oxygen evolution reaction, but is also highly convenient for catalyst recycling and refining due to its single metal component. Such a novel GCURH technique paves the way for the kinetically regulated, limited diffusion distance of thermally activated atoms, which in turn provides enormous opportunities for the development of sophisticated and environmentally sustainable metal cluster catalysts.

2 citations

Posted Content
TL;DR: In this article, the composite inks were formulated, characterised and inkjet-printed onto PEL paper first and then sintered at 150 C for 1 hr. The sheet resistance of the printed patterns was found to be in the range of 0.08 - 4.74 ohm/sq depending on the number of print layers and the graphene/Ag ratio in the formulation.
Abstract: Inkjet-printed wearable electronic textiles (e-textiles) are considered to be very promising due to excellent processing and environmental benefits offered by digital fabrication technique. Inkjet-printing of conductive metallic inks such as silver (Ag) nanoparticles (NPs) are well-established and that of graphene-based inks is of great interest due to multi-functional properties of graphene-based materials. However, poor ink stability at higher graphene concentration and the cost associated with the higher Ag loading in metal inks have limited their wider use. Moreover, graphene-based e-textiles reported so far are mainly based on graphene derivatives such as graphene oxide (GO) or reduced graphene oxide (rGO), which suffers from poor electrical conductivity. Here we report inkjet printing of highly conductive and cost-effective graphene/Ag composite inks for wearable e-textiles applications. The composite inks were formulated, characterised and inkjet-printed onto PEL paper first and then sintered at 150 C for 1 hr. The sheet resistance of the printed patterns is found to be in the range of ~0.08 - 4.74 ohm/sq depending on the number of print layers and the graphene/Ag ratio in the formulation. The optimised composite ink was then successfully printed onto surface pre-treated (by inkjet printing) cotton fabrics in order to produce all-inkjet-printed highly conductive and cost-effective electronic textiles.

2 citations

Patent
19 Jun 2017
TL;DR: In this article, a textile-based sensor which incorporates graphene into the fibre is described. But this sensor is used for a variety of sensing applications such as wearable technology, such as sensing and sensing applications.
Abstract: The present invention relates to a textile-based sensor which incorporates graphene into the fibre The graphene is incorporated by a dyeing process in which a liquid composition containing the graphene is contacted with the fibre The present invention thus also relates to a process for the preparation of a graphene-based yarn and the use of the resulting yarn in a variety of sensing applications The graphene-based yarns of the invention may be derived from naturally occurring materials such as cotton or may be based on synthetic materials such as polyester, nylon, viscose, etc, or may be a blend of natural and synthetic materials The present invention also relates to a screen-printed textile or a porous material, such as paper, printed on its surface with a 2D material such as graphene This printed textile (fabric) has the 2D material incorporated by a screen-printing process in which a liquid or paste composition containing the 2D material is contacted with the textile or paper substrate The present invention thus also relates to a process for the preparation of a graphene-or other 2D material-printed substrate and the use of the resulting printed substrate in a variety of applications such as wearable technology The textiles of the invention may be derived from naturally occurring materials such as cotton or may be based on synthetic materials such as polyester, nylon, viscose, etc, or may be a blend of natural and synthetic materials

2 citations

Journal ArticleDOI
TL;DR: In this paper, a general relation between the doping strength and whether or not adsorbates have a magnetic moment was elucidated, and it was shown that the paramagnetic single NO2 molecule is a strong acceptor, whereas its diamagnetic dimer N2O4 causes only weak doping.
Abstract: Graphene, a one-atom thick zero gap semiconductor [1, 2], has been attracting an increasing interest due to its remarkable physical properties ranging from an electron spectrum resembling relativistic dynamics [3-12] to ballistic transport under ambient conditions [1-4]. The latter makes graphene a promising material for future electronics and the recently demonstrated possibility of chemical doping without significant change in mobility has improved graphene's prospects further [13]. However, to find optimal dopants and, more generally, to progress towards graphene-based electronics requires understanding the physical mechanism behind the chemical doping, which has been lacking so far. Here, we present the first joint experimental and theoretical investigation of adsorbates on graphene. We elucidate a general relation between the doping strength and whether or not adsorbates have a magnetic moment: The paramagnetic single NO2 molecule is found to be a strong acceptor, whereas its diamagnetic dimer N2O4 causes only weak doping. This effect is related to the peculiar density of states of graphene, which provides an ideal situation for model studies of doping effects in semiconductors. Furthermore, we explain recent results on its "chemical sensor" properties, in particular, the possibility to detect a single NO2 molecule [13].

2 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Owing to its unusual electronic spectrum, graphene has led to the emergence of a new paradigm of 'relativistic' condensed-matter physics, where quantum relativistic phenomena can now be mimicked and tested in table-top experiments.
Abstract: Graphene is a rapidly rising star on the horizon of materials science and condensed-matter physics. This strictly two-dimensional material exhibits exceptionally high crystal and electronic quality, and, despite its short history, has already revealed a cornucopia of new physics and potential applications, which are briefly discussed here. Whereas one can be certain of the realness of applications only when commercial products appear, graphene no longer requires any further proof of its importance in terms of fundamental physics. Owing to its unusual electronic spectrum, graphene has led to the emergence of a new paradigm of 'relativistic' condensed-matter physics, where quantum relativistic phenomena, some of which are unobservable in high-energy physics, can now be mimicked and tested in table-top experiments. More generally, graphene represents a conceptually new class of materials that are only one atom thick, and, on this basis, offers new inroads into low-dimensional physics that has never ceased to surprise and continues to provide a fertile ground for applications.

35,293 citations

01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

Journal ArticleDOI
TL;DR: In this paper, the basic theoretical aspects of graphene, a one-atom-thick allotrope of carbon, with unusual two-dimensional Dirac-like electronic excitations, are discussed.
Abstract: This article reviews the basic theoretical aspects of graphene, a one-atom-thick allotrope of carbon, with unusual two-dimensional Dirac-like electronic excitations. The Dirac electrons can be controlled by application of external electric and magnetic fields, or by altering sample geometry and/or topology. The Dirac electrons behave in unusual ways in tunneling, confinement, and the integer quantum Hall effect. The electronic properties of graphene stacks are discussed and vary with stacking order and number of layers. Edge (surface) states in graphene depend on the edge termination (zigzag or armchair) and affect the physical properties of nanoribbons. Different types of disorder modify the Dirac equation leading to unusual spectroscopic and transport properties. The effects of electron-electron and electron-phonon interactions in single layer and multilayer graphene are also presented.

20,824 citations

Journal ArticleDOI
10 Nov 2005-Nature
TL;DR: This study reports an experimental study of a condensed-matter system (graphene, a single atomic layer of carbon) in which electron transport is essentially governed by Dirac's (relativistic) equation and reveals a variety of unusual phenomena that are characteristic of two-dimensional Dirac fermions.
Abstract: Quantum electrodynamics (resulting from the merger of quantum mechanics and relativity theory) has provided a clear understanding of phenomena ranging from particle physics to cosmology and from astrophysics to quantum chemistry. The ideas underlying quantum electrodynamics also influence the theory of condensed matter, but quantum relativistic effects are usually minute in the known experimental systems that can be described accurately by the non-relativistic Schrodinger equation. Here we report an experimental study of a condensed-matter system (graphene, a single atomic layer of carbon) in which electron transport is essentially governed by Dirac's (relativistic) equation. The charge carriers in graphene mimic relativistic particles with zero rest mass and have an effective 'speed of light' c* approximately 10(6) m s(-1). Our study reveals a variety of unusual phenomena that are characteristic of two-dimensional Dirac fermions. In particular we have observed the following: first, graphene's conductivity never falls below a minimum value corresponding to the quantum unit of conductance, even when concentrations of charge carriers tend to zero; second, the integer quantum Hall effect in graphene is anomalous in that it occurs at half-integer filling factors; and third, the cyclotron mass m(c) of massless carriers in graphene is described by E = m(c)c*2. This two-dimensional system is not only interesting in itself but also allows access to the subtle and rich physics of quantum electrodynamics in a bench-top experiment.

18,958 citations