scispace - formally typeset
Search or ask a question
Author

Kostya S. Novoselov

Bio: Kostya S. Novoselov is an academic researcher from National University of Singapore. The author has contributed to research in topics: Graphene & Bilayer graphene. The author has an hindex of 115, co-authored 392 publications receiving 207392 citations. Previous affiliations of Kostya S. Novoselov include University of Manchester & Russian Academy of Sciences.


Papers
More filters
Journal ArticleDOI
TL;DR: A new and highly reliable approach for making graphene membranes of a macroscopic size and their characterization by transmission electron microscopy is described and it is found that long graphene beams supported by only one side do not scroll or fold, in striking contrast to the current perception of graphene as a supple thin fabric.
Abstract: The properties of suspended graphene are currently attracting enormous interest, but the small size of available samples and the difficulties in making them severely restrict the number of experimental techniques that can be used to study the optical, mechanical, electronic, thermal, and other characteristics of this one-atom-thick material. Here, we describe a new and highly reliable approach for making graphene membranes of a macroscopic size (currently up to 100 microm in diameter) and their characterization by transmission electron microscopy. In particular, we have found that long graphene beams supported by only one side do not scroll or fold, in striking contrast to the current perception of graphene as a supple thin fabric, but demonstrate sufficient stiffness to support extremely large loads, millions of times exceeding their own weight, in agreement with the presented theory. Our work opens many avenues for studying suspended graphene and using it in various micromechanical systems and electron microscopy.

596 citations

Journal ArticleDOI
04 Mar 2016-Science
TL;DR: Graphene hosts a unique electron system in which electron-phonon scattering is extremely weak but electron-electron collisions are sufficiently frequent to provide local equilibrium above the temperature of liquid nitrogen, under which electrons can behave as a viscous liquid and exhibit hydrodynamic phenomena similar to classical liquids.
Abstract: Graphene hosts a unique electron system in which electron-phonon scattering is extremely weak but electron-electron collisions are sufficiently frequent to provide local equilibrium above the temperature of liquid nitrogen. Under these conditions, electrons can behave as a viscous liquid and exhibit hydrodynamic phenomena similar to classical liquids. Here we report strong evidence for this transport regime. We found that doped graphene exhibits an anomalous (negative) voltage drop near current-injection contacts, which is attributed to the formation of submicrometer-size whirlpools in the electron flow. The viscosity of graphene’s electron liquid is found to be ~0.1 square meters per second, an order of magnitude higher than that of honey, in agreement with many-body theory. Our work demonstrates the possibility of studying electron hydrodynamics using high-quality graphene.

595 citations

Journal ArticleDOI
TL;DR: Graphene is the first example of truly two-dimensional crystals as mentioned in this paper, and it is a gapless semiconductor with unique electronic properties resulting from the fact that charge carriers in graphene demonstrate charge-conjugation symmetry between electrons and holes and possess an internal degree of freedom similar to "chirality" for ultrarelativistic elementary particles.

564 citations

Journal ArticleDOI
TL;DR: In this article, the effect of strain on the phonon modes of monolayer and few-layer MoS was investigated by observing the strain-induced shifts of the Raman-active modes.
Abstract: The effect of strain on the phonon modes of monolayer and few-layer MoS${}_{2}$ has been investigated by observing the strain-induced shifts of the Raman-active modes. Uniaxial strain was applied to a sample of thin-layer MoS${}_{2}$ sandwiched between two layers of optically transparent polymer. The resulting band shifts of the ${E}_{2g}^{1}$ ($\ensuremath{\sim}$$385.3\phantom{\rule{0.28em}{0ex}}{\mathrm{cm}}^{\ensuremath{-}1}$) and ${A}_{1g}$ ($\ensuremath{\sim}$$402.4\phantom{\rule{0.28em}{0ex}}{\mathrm{cm}}^{\ensuremath{-}1}$) Raman modes were found to be small but observable. First-principles plane-wave calculations based on density functional perturbation theory were used to determine the Gr\"uneisen parameters for the ${E}_{1g}$, ${E}_{2g}^{1}$, ${A}_{1g}$, and ${A}_{2u}$ modes and predict the experimentally observed band shifts for the monolayer material. The polymer--MoS${}_{2}$ interface is found to remain intact through several strain cycles. As an emerging 2D material with potential in future nanoelectronics, these results have important consequences for the incorporation of thin-layer MoS${}_{2}$ into devices.

543 citations

Journal ArticleDOI
TL;DR: In this article, the optical transparency of any two-dimensional system with a symmetric electronic spectrum is governed by the fine structure constant and suggest a simple formula that relates a quasiparticle spectrum to an optical absorption of such a system.
Abstract: We demonstrate that optical transparency of any two-dimensional system with a symmetric electronic spectrum is governed by the fine structure constant and suggest a simple formula that relates a quasiparticle spectrum to an optical absorption of such a system. These results are applied to graphene deposited on a surface of oxidized silicon for which we measure ellipsometric spectra, extract optical constants of a graphene layer and reconstruct the electronic dispersion relation near the K point using optical transmission spectra. We also present spectroscopic ellipsometry analysis of graphene placed on amorphous quartz substrates and report a pronounced peak in ultraviolet absorption at 4.6 eV because of a van Hove singularity in graphene's density of states. The peak is asymmetric and downshifted by 0.5 eV probably due to excitonic effects.

528 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Owing to its unusual electronic spectrum, graphene has led to the emergence of a new paradigm of 'relativistic' condensed-matter physics, where quantum relativistic phenomena can now be mimicked and tested in table-top experiments.
Abstract: Graphene is a rapidly rising star on the horizon of materials science and condensed-matter physics. This strictly two-dimensional material exhibits exceptionally high crystal and electronic quality, and, despite its short history, has already revealed a cornucopia of new physics and potential applications, which are briefly discussed here. Whereas one can be certain of the realness of applications only when commercial products appear, graphene no longer requires any further proof of its importance in terms of fundamental physics. Owing to its unusual electronic spectrum, graphene has led to the emergence of a new paradigm of 'relativistic' condensed-matter physics, where quantum relativistic phenomena, some of which are unobservable in high-energy physics, can now be mimicked and tested in table-top experiments. More generally, graphene represents a conceptually new class of materials that are only one atom thick, and, on this basis, offers new inroads into low-dimensional physics that has never ceased to surprise and continues to provide a fertile ground for applications.

35,293 citations

01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

Journal ArticleDOI
TL;DR: In this paper, the basic theoretical aspects of graphene, a one-atom-thick allotrope of carbon, with unusual two-dimensional Dirac-like electronic excitations, are discussed.
Abstract: This article reviews the basic theoretical aspects of graphene, a one-atom-thick allotrope of carbon, with unusual two-dimensional Dirac-like electronic excitations. The Dirac electrons can be controlled by application of external electric and magnetic fields, or by altering sample geometry and/or topology. The Dirac electrons behave in unusual ways in tunneling, confinement, and the integer quantum Hall effect. The electronic properties of graphene stacks are discussed and vary with stacking order and number of layers. Edge (surface) states in graphene depend on the edge termination (zigzag or armchair) and affect the physical properties of nanoribbons. Different types of disorder modify the Dirac equation leading to unusual spectroscopic and transport properties. The effects of electron-electron and electron-phonon interactions in single layer and multilayer graphene are also presented.

20,824 citations

Journal ArticleDOI
10 Nov 2005-Nature
TL;DR: This study reports an experimental study of a condensed-matter system (graphene, a single atomic layer of carbon) in which electron transport is essentially governed by Dirac's (relativistic) equation and reveals a variety of unusual phenomena that are characteristic of two-dimensional Dirac fermions.
Abstract: Quantum electrodynamics (resulting from the merger of quantum mechanics and relativity theory) has provided a clear understanding of phenomena ranging from particle physics to cosmology and from astrophysics to quantum chemistry. The ideas underlying quantum electrodynamics also influence the theory of condensed matter, but quantum relativistic effects are usually minute in the known experimental systems that can be described accurately by the non-relativistic Schrodinger equation. Here we report an experimental study of a condensed-matter system (graphene, a single atomic layer of carbon) in which electron transport is essentially governed by Dirac's (relativistic) equation. The charge carriers in graphene mimic relativistic particles with zero rest mass and have an effective 'speed of light' c* approximately 10(6) m s(-1). Our study reveals a variety of unusual phenomena that are characteristic of two-dimensional Dirac fermions. In particular we have observed the following: first, graphene's conductivity never falls below a minimum value corresponding to the quantum unit of conductance, even when concentrations of charge carriers tend to zero; second, the integer quantum Hall effect in graphene is anomalous in that it occurs at half-integer filling factors; and third, the cyclotron mass m(c) of massless carriers in graphene is described by E = m(c)c*2. This two-dimensional system is not only interesting in itself but also allows access to the subtle and rich physics of quantum electrodynamics in a bench-top experiment.

18,958 citations