scispace - formally typeset
Search or ask a question

Showing papers by "Kotb Abdelmohsen published in 2006"


Journal ArticleDOI
TL;DR: It is proposed that the posttranscriptional derepression of GADD45α critically contributes to its potent upregulation after DNA damage, thereby allowing coordinated elevations in both Gadd45α mRNA half-life and translation rate, respectively.

87 citations


Journal ArticleDOI
TL;DR: Findings show how cell type-specific detrimental phenotypes can offer a paradoxical and yet key counterweight to the selective advantage attained by cells as they experiment with genetic null states during tumorigenesis, the resultant balance then determining the observed biallelic mutation rate for a given tumor-suppressor gene.
Abstract: Tumor-suppressors have commanded attention due to the selection for their inactivating mutations in human tumors. However, relatively little is understood about the inverse, namely, that tumors do not select for a large proportion of seemingly favorable mutations in tumor-suppressor genes. This could be explained by a detrimental phenotype accruing in a cell type-specific manner to most cells experiencing a biallelic loss. For example, MKK4, a tumor suppressor gene distinguished by a remarkably consistent mutational rate across diverse tumor types and an unusually high rate of loss of heterozygosity, has the surprisingly low rate of genetic inactivation of only approximately 5%. To explore this incongruity, we engineered a somatic gene knockout of MKK4 in human cancer cells. Although the null cells resembled the wild-type cells regarding in vitro viability and proliferation in plastic dishes, there was a marked difference in a more relevant in vivo model of experimental metastasis and tumorigenesis. MKK4(-/-) clones injected i.v. produced fewer lung metastases than syngeneic MKK4-competent cells (P = 0.0034). These findings show how cell type-specific detrimental phenotypes can offer a paradoxical and yet key counterweight to the selective advantage attained by cells as they experiment with genetic null states during tumorigenesis, the resultant balance then determining the observed biallelic mutation rate for a given tumor-suppressor gene.

51 citations


01 Jan 2006
TL;DR: Studies of both endogenous and ectopically expressed thymidylate synthase alleles revealed that the mRNA-binding, decay-promoting protein AUF1 has higher affinity for allele D mRNA, uncovering a novel mechanism of action for non-coding RNA polymorphisms.
Abstract: A 6-nucleotide insertion (I)/deletion (D) polymorphism in the 3-untranslated region of the thymidylate synthase gene was shown to influence mRNA stability, but the molecular basis of this effect has not been elucidated. Here, studies of both endogenous and ectopically expressed thymidylate synthase alleles revealed that the mRNA-binding, decay-promoting protein AUF1 has higher affinity for allele D mRNA. AUF1 overexpression preferentially suppressed D allele mRNA levels, whereas AUF1 silencing selectively elevated D allele mRNA levels. Our results illustrate the functional consequences of ribonucleoprotein associations involving a polymorphic RNA sequence and uncover a novel mechanism of action for non-coding RNA polymorphisms.

47 citations


Journal ArticleDOI
TL;DR: In this article, a 6-nucleotide insertion (I)/deletion (D) polymorphism in the 3'-untranslated region of the thymidylate synthase gene was shown to influence mRNA stability.

44 citations


Journal ArticleDOI
TL;DR: It is theorized that a gene dosagedependentphenotype of MKK4 could plausibly promote the emergence of 17p LOH and thereby the probability of evolving the biallelic inactivation of TP53.
Abstract: Although aneuploidy is a global genomic abnormality present in most human cancers, the clonal selection model best explains the action of select activating mutations in oncogenes and homozygous losses of tumor-suppressor genes. Simple gene dosage changes are difficult however, to incorporate into this model, in part due to negative feedback loops that govern major cancer mutational targets (e.g., TP53, PTCH, SMAD4) and essentially preclude a haploinsufficient phenotype. The 17p conundrum may offer a clue to reconciling this difficulty: In comparison to the moderate mutation rate of TP53, many tumors have a disproportionately high frequency of loss of 17p. This discrepancy, and similar discrepancies at other sites of LOH, has long been thought to be due to the presence of undiscovered yet frequently mutated tumor-suppressor genes. However, over 15 years of searching for this grail has distributed bountiful disappointment. It is perhaps time to seriously consider an alternative explanation. Located on 17p adjacent to the TP53 gene, MKK4 is one of the most consistently mutated genes across tumor types, and is located on one of the most frequently lost arms in the human genome. We theorized that a gene dosage-dependent phenotype of MKK4 could plausibly promote the emergence of 17p LOH and thereby the probability of evolving the biallelic inactivation of TP53. Using MKK4 somatic human knockout cancer cells, we observed the proof-of-principle in the downstream gene dosage-dependent phenotypes: heterozygous and homozygous knockouts were progressively deficient in Mkk4 protein, in stress-induced phosphorylation of Jnk, and the resultant upregulation of JUN mRNA. These observations highlight a lack of compensatory regulation when gene dosage changes perturb the Jnk-Jun relationship. Consideration of gene dosage changes specifically affecting members of positive feedback loops may permit integration of the aneuploidy process into a conventional model of clonal selection in tumorigenesis.

11 citations