scispace - formally typeset
Search or ask a question

Showing papers by "Kotb Abdelmohsen published in 2012"


Journal ArticleDOI
TL;DR: It is proposed that HuR controls translation of a subset of target mRNAs by influencing lincRNA-p21 levels, which in turn derepressed JunB and β-catenin translation and increased the levels of these proteins.

856 citations


Journal ArticleDOI
TL;DR: The RNA-binding activities of nucleolin are reviewed, its influence on gene expression patterns, and its impact upon diseases are reviewed.
Abstract: Nucleolin is a multifunctional protein localized primarily in the nucleolus, but also found in the nucleoplasm, cytoplasm and cell membrane. It is involved in several aspects of DNA metabolism, and participates extensively in RNA regulatory mechanisms, including transcription, ribosome assembly, mRNA stability and translation, and microRNA processing. Nucleolin's implication in disease is linked to its ability to associate with target RNAs via its four RNA-binding domains and its arginine/glycin-rich domain. By modulating the post-transcriptional fate of target mRNAs, which typically bear AU-rich and/or G-rich elements, nucleolin has been linked to cellular events that influence disease, notably cell proliferation and protection against apoptotic death. Through its diverse RNA functions, nucleolin is increasingly implicated in pathological processes, particularly cancer and viral infection. Here, we review the RNA-binding activities of nucleolin, its influence on gene expression patterns, and its impact upon diseases. We also discuss the rising interest in targeting nucleolin therapeutically.

219 citations


Journal ArticleDOI
TL;DR: It is reported that the RNA-binding protein AUF1 (AU-binding factor 1) associates with the endogenous DICER1 mRNA and can interact with several segments of DICer1 mRNA within the coding region (CR) and the 3′-untranslated region (UTR) and suppresses miRNA production by reducing Dicer production.
Abstract: MicroRNA (miRNA) biogenesis is tightly regulated by numerous proteins. Among them, Dicer is required for the processing of the precursor (pre-)miRNAs into the mature miRNA. Despite its critical function, the mechanisms that regulate Dicer expression are not well understood. Here we report that the RNA-binding protein (RBP) AUF1 (AU-binding factor 1) associates with the endogenous DICER1 mRNA and can interact with several segments of DICER1 mRNA within the coding region (CR) and the 3'-untranslated region (UTR). Through these interactions, AUF1 lowered DICER1 mRNA stability, since silencing AUF1 lengthened DICER1 mRNA half-life and increased Dicer expression, while overexpressing AUF1 lowered DICER1 mRNA and Dicer protein levels. Given that Dicer is necessary for the synthesis of mature miRNAs, the lowering of Dicer levels by AUF1 diminished the levels of miRNAs tested, but not the levels of the corresponding pre-miRNAs. In summary, AUF1 suppresses miRNA production by reducing Dicer production.

69 citations


Journal ArticleDOI
TL;DR: It is suggested that HuR is an important regulator of Msi1 in glioblastoma and that this regulation has important biological consequences during gliomagenesis.
Abstract: Musashi1 (Msi1) is an evolutionarily conserved RNA-binding protein (RBP) that has profound implications in cellular processes such as stem cell maintenance, nervous system development, and tumorigenesis. Msi1 is highly expressed in many cancers, including glioblastoma, whereas in normal tissues, its expression is restricted to stem cells. Unfortunately, the factors that modulate Msi1 expression and trigger high levels in tumors are largely unknown. The Msi1 mRNA has a long 3′ untranslated region (UTR) containing several AU- and U-rich sequences. This type of sequence motif is often targeted by HuR, another important RBP known to be highly expressed in tumor tissue such as glioblastoma and to regulate a variety of cancer-related genes. In this report, we show an interaction between HuR and the Msi1 3′-UTR, resulting in a positive regulation of Msi1 expression. We show that HuR increased MSI1 mRNA stability and promoted its translation. We also present evidence that expression of HuR and Msi1 correlate positively in clinical glioblastoma samples. Finally, we show that inhibition of cell proliferation, increased apoptosis, and changes in cell-cycle profile as a result of silencing HuR are partially rescued when Msi1 is ectopically expressed. In summary, our results suggest that HuR is an important regulator of Msi1 in glioblastoma and that this regulation has important biological consequences during gliomagenesis. Mol Cancer Res; 10(1); 143–55. ©2012 AACR .

64 citations


Journal ArticleDOI
TL;DR: Results indicate that miR-519 promotes DNA damage, alters Ca2+ homeostasis, and enhances energy production; together, these processes elevate the expression level of p21, promoting growth inhibition and cell survival.
Abstract: The microRNA miR-519 robustly inhibits cell proliferation, in turn triggering senescence and decreasing tumor growth. However, the molecular mediators of miR-519-elicited growth inhibition are unknown. Here, we systematically investigated the influence of miR-519 on gene expression profiles leading to growth cessation in HeLa human cervical carcinoma cells. By analyzing miR-519-triggered changes in protein and mRNA expression patterns and by identifying mRNAs associated with biotinylated miR-519, we uncovered two prominent subsets of miR-519-regulated mRNAs. One subset of miR-519 target mRNAs encoded DNA maintenance proteins (including DUT1, EXO1, RPA2, and POLE4); miR-519 repressed their expression and increased DNA damage, in turn raising the levels of the cyclin-dependent kinase (cdk) inhibitor p21. The other subset of miR-519 target mRNAs encoded proteins that control intracellular calcium levels (notably, ATP2C1 and ORAI1); their downregulation by miR-519 aberrantly elevated levels of cytosolic [Ca2+] storage in HeLa cells, similarly increasing p21 levels in a manner dependent on the Ca2+-activated kinases CaMKII and GSK3β. The rises in levels of DNA damage, the Ca2+ concentration, and p21 levels stimulated an autophagic phenotype in HeLa and other human carcinoma cell lines. As a consequence, ATP levels increased, and the level of activity of the AMP-activated protein kinase (AMPK) declined, further contributing to the elevation in the abundance of p21. Our results indicate that miR-519 promotes DNA damage, alters Ca2+ homeostasis, and enhances energy production; together, these processes elevate the expression level of p21, promoting growth inhibition and cell survival.

55 citations


Journal ArticleDOI
31 Oct 2012
TL;DR: It is indicated that NF90 contributes to maintaining low levels of SASP factors in non-senescent cells, while NF90 reduction in senescent cells allows SASP factor expression to rise.
Abstract: A hallmark trait of cellular senescence is the acquisition of a senescence-associated secretory phenotype (SASP). SASP factors include cytokines and their receptors (IL-6, IL-8, osteoprotegerin, GM-CSF), chemokines and their ligands (MCP-1, HCC4), and oncogenes (Gro1 and Gro2), many of them encoded by mRNAs whose stability and translation are tightly regulated. Using two models of human fibroblast senescence (WI-38 and IDH4 cells), we report the identification of RNA-binding protein NF90 as a post-transcriptional repressor of several SASP factors. In ‘young’, proliferating fibroblasts, NF90 was highly abundant, associated with numerous SASP mRNAs, and inhibited their expression. By contrast, senescent cells expressed low levels of NF90, thus allowing SASP factor expression to increase. NF90 elicited these effects mainly by repressing the translation of target SASP mRNAs, since silencing NF90 did not increase the steady-state levels of SASP mRNAs but elevated key SASP factors including MCP-1, GROa, IL-6, and IL-8. Our findings indicate that NF90 contributes to maintaining low levels of SASP factors in non-senescent cells, while NF90 reduction in senescent cells allows SASP factor expression to rise.

41 citations


Journal ArticleDOI
TL;DR: How miRNA biogenesis proteins promote or inhibit senescence, and thus influence the senescent phenotype that affects normal tissue function and pathology is discussed.

38 citations


Book ChapterDOI
19 Sep 2012
TL;DR: Once mRNAs are transcribed they are subjected to posttranscriptional events that regulate mRNA metabolism including stability and translation, which normally dictate the protein levels encoded by mRNA.
Abstract: Regulation of gene expression is an essential process through which mammalian cells counter the changes in their microenvironment. These changes drive cells to respond to different stimuli that trigger cellular re-programming towards proliferation, differentiation, development, apoptosis, senescence, carcinogenesis, etc. Once mRNAs are transcribed they are subjected to posttranscriptional events that regulate mRNA metabolism including stability and translation. These two processes normally dictate the protein levels encoded by mRNA. RNA-binding proteins (RPBs) that bind mature mRNA sequences normally have an important regulatory effect on the mRNA.

9 citations


Journal ArticleDOI
28 Apr 2012

1 citations