scispace - formally typeset
Search or ask a question
Author

Kotb Abdelmohsen

Bio: Kotb Abdelmohsen is an academic researcher from National Institutes of Health. The author has contributed to research in topics: RNA-binding protein & Gene silencing. The author has an hindex of 63, co-authored 145 publications receiving 17825 citations. Previous affiliations of Kotb Abdelmohsen include Catalan Institution for Research and Advanced Studies & University of Maryland, Baltimore.


Papers
More filters
Journal ArticleDOI
TL;DR: The knowledge of mitochondrial RNA is summarized, recent progress in understanding the molecular mechanisms and functional impact of RNA import into mitochondria are discussed, and rising challenges and opportunities in this rapidly evolving field are identified.
Abstract: Mitochondria are cytosolic organelles essential for generating energy and maintaining cell homeostasis. Despite their critical function, the handful of proteins expressed by the mitochondrial genome is insufficient to maintain mitochondrial structure or activity. Accordingly, mitochondrial metabolism is fully dependent on factors encoded by the nuclear DNA, including many proteins synthesized in the cytosol and imported into mitochondria via established mechanisms. However, there is growing evidence that mammalian mitochondria can also import cytosolic noncoding RNA via poorly understood processes. Here, we summarize our knowledge of mitochondrial RNA, discuss recent progress in understanding the molecular mechanisms and functional impact of RNA import into mitochondria, and identify rising challenges and opportunities in this rapidly evolving field. [BMB Reports 2017; 50(4): 164-174].

51 citations

Journal ArticleDOI
TL;DR: Findings show how cell type-specific detrimental phenotypes can offer a paradoxical and yet key counterweight to the selective advantage attained by cells as they experiment with genetic null states during tumorigenesis, the resultant balance then determining the observed biallelic mutation rate for a given tumor-suppressor gene.
Abstract: Tumor-suppressors have commanded attention due to the selection for their inactivating mutations in human tumors. However, relatively little is understood about the inverse, namely, that tumors do not select for a large proportion of seemingly favorable mutations in tumor-suppressor genes. This could be explained by a detrimental phenotype accruing in a cell type-specific manner to most cells experiencing a biallelic loss. For example, MKK4, a tumor suppressor gene distinguished by a remarkably consistent mutational rate across diverse tumor types and an unusually high rate of loss of heterozygosity, has the surprisingly low rate of genetic inactivation of only approximately 5%. To explore this incongruity, we engineered a somatic gene knockout of MKK4 in human cancer cells. Although the null cells resembled the wild-type cells regarding in vitro viability and proliferation in plastic dishes, there was a marked difference in a more relevant in vivo model of experimental metastasis and tumorigenesis. MKK4(-/-) clones injected i.v. produced fewer lung metastases than syngeneic MKK4-competent cells (P = 0.0034). These findings show how cell type-specific detrimental phenotypes can offer a paradoxical and yet key counterweight to the selective advantage attained by cells as they experiment with genetic null states during tumorigenesis, the resultant balance then determining the observed biallelic mutation rate for a given tumor-suppressor gene.

51 citations

Journal ArticleDOI
TL;DR: Evidence that the expression of DNMT3b is post-transcriptionally regulated by HuR, an RNA-binding protein that stabilizes and/or modulates the translation of target mRNAs is presented, and the functional consequences of the HuR-regulated DN MT3b upon DNA methylation patterns are revealed.
Abstract: The molecular basis underlying the aberrant DNA-methylation patterns in human cancer is largely unknown. Altered DNA methyltransferase (DNMT) activity is believed to contribute, as DNMT expression levels increase during tumorigenesis. Here, we present evidence that the expression of DNMT3b is post-transcriptionally regulated by HuR, an RNA-binding protein that stabilizes and/or modulates the translation of target mRNAs. The presence of a putative HuR-recognition motif in the DNMT3b 3′UTR prompted studies to investigate if this transcript associated with HuR. The interaction between HuR and DNMT3b mRNA was studied by immunoprecipitation of endogenous HuR ribonucleoprotein complexes followed by RT–qPCR detection of DNMT3b mRNA, and by in vitro pulldown of biotinylated DNMT3b RNAs followed by western blotting detection of HuR. These studies revealed that binding of HuR stabilized the DNMT3b mRNA and increased DNMT3b expression. Unexpectedly, cisplatin treatment triggered the dissociation of the [HuR-DNMT3b mRNA] complex, in turn promoting DNMT3b mRNA decay, decreasing DNMT3b abundance, and lowering the methylation of repeated sequences and global DNA methylation. In summary, our data identify DNMT3b mRNA as a novel HuR target, present evidence that HuR affects DNMT3b expression levels post-transcriptionally, and reveal the functional consequences of the HuR-regulated DNMT3b upon DNA methylation patterns.

51 citations

Journal ArticleDOI
TL;DR: HNRNPH is a splicing regulator of Trf2 pre-mRNA that prevents the expression of TRF2-S, a factor implicated in neuronal differentiation, and selectively accelerates the NGF-triggered differentiation of rat pheochromocytoma cells into neurons.

48 citations

Book ChapterDOI
TL;DR: Senescent cells arise as a consequence of cellular damage and can have either a detrimental or advantageous impact on tissues and organs depending on the specific cell type and metabolic state, so understanding the molecular mechanisms by which MicroRNAs influence senescence will enable diagnostic and therapeutic opportunities directed at senescent cells.
Abstract: Senescent cells arise as a consequence of cellular damage and can have either a detrimental or advantageous impact on tissues and organs depending on the specific cell type and metabolic state. As senescent cells accumulate in tissues with advancing age, they have been implicated in many age-related declines and diseases. The major facets of senescence include two pathways responsible for establishing and maintaining a senescence program, p53/CDKN1A(p21) and CDKN2A(p16)/RB, as well as the senescence-associated secretory phenotype. Numerous MicroRNAs influence senescence by modulating the abundance of key senescence regulatory proteins, generally by lowering the stability and/or translation of mRNAs that encode such factors. Accordingly, understanding the molecular mechanisms by which MicroRNAs influence senescence will enable diagnostic and therapeutic opportunities directed at senescent cells. Here, we review senescence-associated (SA)-MicroRNAs and discuss their implications in senescence-relevant pathologies.

48 citations


Cited by
More filters
Journal ArticleDOI
06 Jun 2013-Cell
TL;DR: Nine tentative hallmarks that represent common denominators of aging in different organisms are enumerated, with special emphasis on mammalian aging, to identify pharmaceutical targets to improve human health during aging, with minimal side effects.

9,980 citations

Journal ArticleDOI
Lorenzo Galluzzi1, Lorenzo Galluzzi2, Ilio Vitale3, Stuart A. Aaronson4  +183 moreInstitutions (111)
TL;DR: The Nomenclature Committee on Cell Death (NCCD) has formulated guidelines for the definition and interpretation of cell death from morphological, biochemical, and functional perspectives.
Abstract: Over the past decade, the Nomenclature Committee on Cell Death (NCCD) has formulated guidelines for the definition and interpretation of cell death from morphological, biochemical, and functional perspectives. Since the field continues to expand and novel mechanisms that orchestrate multiple cell death pathways are unveiled, we propose an updated classification of cell death subroutines focusing on mechanistic and essential (as opposed to correlative and dispensable) aspects of the process. As we provide molecularly oriented definitions of terms including intrinsic apoptosis, extrinsic apoptosis, mitochondrial permeability transition (MPT)-driven necrosis, necroptosis, ferroptosis, pyroptosis, parthanatos, entotic cell death, NETotic cell death, lysosome-dependent cell death, autophagy-dependent cell death, immunogenic cell death, cellular senescence, and mitotic catastrophe, we discuss the utility of neologisms that refer to highly specialized instances of these processes. The mission of the NCCD is to provide a widely accepted nomenclature on cell death in support of the continued development of the field.

3,301 citations

Journal ArticleDOI
16 Jan 2014-Nature
TL;DR: Understanding this novel RNA crosstalk will lead to significant insight into gene regulatory networks and have implications in human development and disease.
Abstract: Recent reports have described an intricate interplay among diverse RNA species, including protein-coding messenger RNAs and non-coding RNAs such as long non-coding RNAs, pseudogenes and circular RNAs. These RNA transcripts act as competing endogenous RNAs (ceRNAs) or natural microRNA sponges — they communicate with and co-regulate each other by competing for binding to shared microRNAs, a family of small non-coding RNAs that are important post-transcriptional regulators of gene expression. Understanding this novel RNA crosstalk will lead to significant insight into gene regulatory networks and have implications in human development and disease.

2,869 citations

Journal ArticleDOI
14 May 2007-Oncogene
TL;DR: Recent findings and hypotheses on the role of MAPK pathways in cancer are discussed, with a focus on stress-activated pathways, which largely seem to counteract malignant transformation.
Abstract: Cancer can be perceived as a disease of communication between and within cells. The aberrations are pleiotropic, but mitogen-activated protein kinase (MAPK) pathways feature prominently. Here, we discuss recent findings and hypotheses on the role of MAPK pathways in cancer. Cancerous mutations in MAPK pathways are frequently mostly affecting Ras and B-Raf in the extracellular signal-regulated kinase pathway. Stress-activated pathways, such as Jun N-terminal kinase and p38, largely seem to counteract malignant transformation. The balance and integration between these signals may widely vary in different tumours, but are important for the outcome and the sensitivity to drug therapy.

2,605 citations

Journal ArticleDOI
TL;DR: The function of lncRNAs in developmental processes, such as in dosage compensation, genomic imprinting, cell differentiation and organogenesis, with a particular emphasis on mammalian development are described.
Abstract: Genomes of multicellular organisms are characterized by the pervasive expression of different types of non-coding RNAs (ncRNAs). Long ncRNAs (lncRNAs) belong to a novel heterogeneous class of ncRNAs that includes thousands of different species. lncRNAs have crucial roles in gene expression control during both developmental and differentiation processes, and the number of lncRNA species increases in genomes of developmentally complex organisms, which highlights the importance of RNA-based levels of control in the evolution of multicellular organisms. In this Review, we describe the function of lncRNAs in developmental processes, such as in dosage compensation, genomic imprinting, cell differentiation and organogenesis, with a particular emphasis on mammalian development.

2,464 citations