scispace - formally typeset
Search or ask a question
Author

Kotb Abdelmohsen

Bio: Kotb Abdelmohsen is an academic researcher from National Institutes of Health. The author has contributed to research in topics: RNA-binding protein & Gene silencing. The author has an hindex of 63, co-authored 145 publications receiving 17825 citations. Previous affiliations of Kotb Abdelmohsen include Catalan Institution for Research and Advanced Studies & University of Maryland, Baltimore.


Papers
More filters
Journal ArticleDOI
TL;DR: The findings demonstrate that HuR regulates SIRT1 expression, underscore functional links between the two stress-response proteins, and implicate Chk2 in these processes.

517 citations

Journal ArticleDOI
TL;DR: Through these regulatory mechanisms, lncRNAs can elicit differentiation, proliferation, and cytoprotective programs, underscoring the rising recognition of lncRNA roles in human disease.

501 citations

Journal ArticleDOI
TL;DR: A role for Aβ-induced OPC cell senescence in neuroinflammation and cognitive deficits in AD is suggested, and a potential therapeutic benefit of senolytic treatments is suggested.
Abstract: Neuritic plaques, a pathological hallmark in Alzheimer’s disease (AD) brains, comprise extracellular aggregates of amyloid-beta (Aβ) peptide and degenerating neurites that accumulate autolysosomes. We found that, in the brains of patients with AD and in AD mouse models, Aβ plaque-associated Olig2- and NG2-expressing oligodendrocyte progenitor cells (OPCs), but not astrocytes, microglia, or oligodendrocytes, exhibit a senescence-like phenotype characterized by the upregulation of p21/CDKN1A, p16/INK4/CDKN2A proteins, and senescence-associated β-galactosidase activity. Molecular interrogation of the Aβ plaque environment revealed elevated levels of transcripts encoding proteins involved in OPC function, replicative senescence, and inflammation. Direct exposure of cultured OPCs to aggregating Aβ triggered cell senescence. Senolytic treatment of AD mice selectively removed senescent cells from the plaque environment, reduced neuroinflammation, lessened Aβ load, and ameliorated cognitive deficits. Our findings suggest a role for Aβ-induced OPC cell senescence in neuroinflammation and cognitive deficits in AD, and a potential therapeutic benefit of senolytic treatments. The Alzheimer’s disease (AD) amyloid-beta peptide causes oligodendrocyte progenitor cells to undergo senescence, contributing to neuroinflammation and cognitive impairment. Treatment of AD mice with senolytic drugs ameliorates AD neuropathologies and cognitive deficits.

480 citations

Journal ArticleDOI
TL;DR: It is proposed that HuR exerts a tumorigenic function by enabling these cancer phenotypes, and the collections of HuR target mRNAs that encode proteins responsible for implementing five major cancer traits are reviewed.
Abstract: Cancer-related gene expression programs are strongly influenced by posttranscriptional mechanisms. The RNA-binding protein HuR is highly abundant in many cancers. Numerous HuR-regulated mRNAs encode proteins implicated in carcinogenesis. Here, we review the collections of HuR target mRNAs that encode proteins responsible for implementing five major cancer traits. By interacting with specific mRNA subsets, HuR enhances the levels of proteins that (1) promote cell proliferation, (2) increase cell survival, (3) elevate local angiogenesis, (4) help the cancer cell evade immune recognition, and (5) facilitate cancer cell invasion and metastasis. We propose that HuR exerts a tumorigenic function by enabling these cancer phenotypes. We discuss evidence that links HuR to several specific cancers and suggests its potential usefulness in cancer diagnosis, prognosis, and therapy.

376 citations


Cited by
More filters
Journal ArticleDOI
06 Jun 2013-Cell
TL;DR: Nine tentative hallmarks that represent common denominators of aging in different organisms are enumerated, with special emphasis on mammalian aging, to identify pharmaceutical targets to improve human health during aging, with minimal side effects.

9,980 citations

Journal ArticleDOI
Lorenzo Galluzzi1, Lorenzo Galluzzi2, Ilio Vitale3, Stuart A. Aaronson4  +183 moreInstitutions (111)
TL;DR: The Nomenclature Committee on Cell Death (NCCD) has formulated guidelines for the definition and interpretation of cell death from morphological, biochemical, and functional perspectives.
Abstract: Over the past decade, the Nomenclature Committee on Cell Death (NCCD) has formulated guidelines for the definition and interpretation of cell death from morphological, biochemical, and functional perspectives. Since the field continues to expand and novel mechanisms that orchestrate multiple cell death pathways are unveiled, we propose an updated classification of cell death subroutines focusing on mechanistic and essential (as opposed to correlative and dispensable) aspects of the process. As we provide molecularly oriented definitions of terms including intrinsic apoptosis, extrinsic apoptosis, mitochondrial permeability transition (MPT)-driven necrosis, necroptosis, ferroptosis, pyroptosis, parthanatos, entotic cell death, NETotic cell death, lysosome-dependent cell death, autophagy-dependent cell death, immunogenic cell death, cellular senescence, and mitotic catastrophe, we discuss the utility of neologisms that refer to highly specialized instances of these processes. The mission of the NCCD is to provide a widely accepted nomenclature on cell death in support of the continued development of the field.

3,301 citations

Journal ArticleDOI
16 Jan 2014-Nature
TL;DR: Understanding this novel RNA crosstalk will lead to significant insight into gene regulatory networks and have implications in human development and disease.
Abstract: Recent reports have described an intricate interplay among diverse RNA species, including protein-coding messenger RNAs and non-coding RNAs such as long non-coding RNAs, pseudogenes and circular RNAs. These RNA transcripts act as competing endogenous RNAs (ceRNAs) or natural microRNA sponges — they communicate with and co-regulate each other by competing for binding to shared microRNAs, a family of small non-coding RNAs that are important post-transcriptional regulators of gene expression. Understanding this novel RNA crosstalk will lead to significant insight into gene regulatory networks and have implications in human development and disease.

2,869 citations

Journal ArticleDOI
14 May 2007-Oncogene
TL;DR: Recent findings and hypotheses on the role of MAPK pathways in cancer are discussed, with a focus on stress-activated pathways, which largely seem to counteract malignant transformation.
Abstract: Cancer can be perceived as a disease of communication between and within cells. The aberrations are pleiotropic, but mitogen-activated protein kinase (MAPK) pathways feature prominently. Here, we discuss recent findings and hypotheses on the role of MAPK pathways in cancer. Cancerous mutations in MAPK pathways are frequently mostly affecting Ras and B-Raf in the extracellular signal-regulated kinase pathway. Stress-activated pathways, such as Jun N-terminal kinase and p38, largely seem to counteract malignant transformation. The balance and integration between these signals may widely vary in different tumours, but are important for the outcome and the sensitivity to drug therapy.

2,605 citations

Journal ArticleDOI
TL;DR: The function of lncRNAs in developmental processes, such as in dosage compensation, genomic imprinting, cell differentiation and organogenesis, with a particular emphasis on mammalian development are described.
Abstract: Genomes of multicellular organisms are characterized by the pervasive expression of different types of non-coding RNAs (ncRNAs). Long ncRNAs (lncRNAs) belong to a novel heterogeneous class of ncRNAs that includes thousands of different species. lncRNAs have crucial roles in gene expression control during both developmental and differentiation processes, and the number of lncRNA species increases in genomes of developmentally complex organisms, which highlights the importance of RNA-based levels of control in the evolution of multicellular organisms. In this Review, we describe the function of lncRNAs in developmental processes, such as in dosage compensation, genomic imprinting, cell differentiation and organogenesis, with a particular emphasis on mammalian development.

2,464 citations