scispace - formally typeset
Search or ask a question
Author

Kotb Abdelmohsen

Bio: Kotb Abdelmohsen is an academic researcher from National Institutes of Health. The author has contributed to research in topics: RNA-binding protein & Gene silencing. The author has an hindex of 63, co-authored 145 publications receiving 17825 citations. Previous affiliations of Kotb Abdelmohsen include Catalan Institution for Research and Advanced Studies & University of Maryland, Baltimore.


Papers
More filters
Journal ArticleDOI
TL;DR: Evidence is presented that HuR phosphorylation at S202 by the G2-phase kinase Cdk1 influences its subcellular distribution and helps to retain it in the nucleus in association with 14-3-3 and hindering its post-transcriptional function and anti-apoptotic influence.
Abstract: A predominantly nuclear RNA-binding protein, HuR translocates to the cytoplasm in response to stress and proliferative signals, where it stabilizes or modulates the translation of target mRNAs. Here, we present evidence that HuR phosphorylation at S202 by the G2-phase kinase Cdk1 influences its subcellular distribution. HuR was specifically phosphorylated in synchronous G2-phase cultures; its cytoplasmic levels increased by Cdk1-inhibitory interventions and declined in response to Cdk1-activating interventions. In keeping with the prominently cytoplasmic location of the nonphosphorylatable point mutant HuR(S202A), phospho-HuR(S202) was shown to be predominantly nuclear using a novel anti-phospho-HuR(S202) antibody. The enhanced cytoplasmic presence of unphosphorylated HuR was linked to its decreased association with 14–3–3 and to its heightened binding to target mRNAs. Our findings suggest that Cdk1 phosphorylates HuR during G2, thereby helping to retain it in the nucleus in association with 14–3–3 and hindering its post-transcriptional function and anti-apoptotic influence.

194 citations

Journal ArticleDOI
TL;DR: Findings indicate that the SAC-RNA CircPVT1, elevated in dividing cells and reduced in senescent cells, sequesters let-7 to enable a proliferative phenotype.
Abstract: Using RNA sequencing (RNA-Seq), we compared the expression patterns of circular RNAs in proliferating (early-passage) and senescent (late-passage) human diploid WI-38 fibroblasts. Among the differentially expressed senescence-associated circRNAs (which we termed ‘SAC-RNAs’), we identified CircPVT1, generated by circularization of an exon of the PVT1 gene, as a circular RNA showing markedly reduced levels in senescent fibroblasts. Reducing CircPVT1 levels in proliferating fibroblasts triggered senescence, as determined by a rise in senescence-associated β-galactosidase activity, higher abundance of CDKN1A/P21 and TP53, and reduced cell proliferation. Although several microRNAs were predicted to bind CircPVT1, only let-7 was found enriched after pulldown of endogenous CircPVT1, suggesting that CircPVT1 might selectively modulate let-7 activity and hence expression of let-7-regulated mRNAs. Reporter analysis revealed that CircPVT1 decreased the cellular pool of available let-7, and antagonizing endogenous let-7 triggered cell proliferation. Importantly, silencing CircPVT1 promoted cell senescence and reversed the proliferative phenotype observed after let-7 function was impaired. Consequently, the levels of several proliferative proteins that prevent senescence, such as IGF2BP1, KRAS and HMGA2, encoded by let-7 target mRNAs, were reduced by silencing CircPVT1. Our findings indicate that the SAC-RNA CircPVT1, elevated in dividing cells and reduced in senescent cells, sequesters let-7 to enable a proliferative phenotype.

185 citations

Journal ArticleDOI
22 Dec 2014
TL;DR: The current understanding of lncRNAs that control the development of aging traits is reviewed.
Abstract: During aging, progressive deleterious changes increase the risk of disease and death. Prominent molecular hallmarks of aging are genomic instability, telomere attrition, epigenetic alterations, loss of proteostasis, cellular senescence, stem cell exhaustion, and altered intercellular communication. Long noncoding RNAs (lncRNAs) play important roles in a wide range of biological processes, including age-related diseases like cancer, cardiovascular pathologies, and neurodegenerative disorders. Evidence is emerging that lncRNAs influence the molecular processes that underlie age-associated phenotypes. Here, we review our current understanding of lncRNAs that control the development of aging traits.

175 citations

Journal ArticleDOI
TL;DR: Modifications of HuR function are described that alter its subcellular localization and its ability to bind target RNAs and impact on gene expression programs and disease states.
Abstract: The RNA-binding protein HuR (human antigen R) associates with numerous transcripts, coding and noncoding, and controls their splicing, localization, stability, and translation. Through its regulation of target transcripts, HuR has been implicated in cellular events including proliferation, senescence, differentiation, apoptosis, and the stress and immune responses. In turn, HuR influences processes such as cancer and inflammation. HuR function is primarily regulated through posttranslational modifications that alter its subcellular localization and its ability to bind target RNAs; such modifications include phosphorylation, methylation, ubiquitination, NEDDylation, and proteolytic cleavage. In this review, we describe the modifications that impact upon HuR function on gene expression programs and disease states. WIREs RNA 2017, 8:e1372. doi: 10.1002/wrna.1372 For further resources related to this article, please visit the WIREs website.

171 citations

Journal ArticleDOI
TL;DR: The results reveal that the expression of known and novel lncRNAs changes with senescence and suggests that SAL‐RNAs play direct regulatory roles in this important cellular process.
Abstract: Noncoding RNAs include small transcripts, such as microRNAs and piwi-interacting RNAs, and a wide range of long noncoding RNAs (lncRNAs). Although many lncRNAs have been identified, only a small number of lncRNAs have been characterized functionally. Here, we sought to identify lncRNAs differentially expressed during replicative senescence. We compared lncRNAs expressed in proliferating, early-passage, 'young' human diploid WI-38 fibroblasts [population doubling (PDL) 20] with those expressed in senescent, late-passage, 'old' fibroblasts (PDL 52) by RNA sequencing (RNA-Seq). Numerous transcripts in all lncRNA groups (antisense lncRNAs, pseudogene-encoded lncRNAs, previously described lncRNAs and novel lncRNAs) were validated using reverse transcription (RT) and real-time, quantitative (q)PCR. Among the novel senescence-associated lncRNAs (SAL-RNAs) showing lower abundance in senescent cells, SAL-RNA1 (XLOC_023166) was found to delay senescence, because reducing SAL-RNA1 levels enhanced the appearance of phenotypic traits of senescence, including an enlarged morphology, positive β-galactosidase activity, and heightened p53 levels. Our results reveal that the expression of known and novel lncRNAs changes with senescence and suggests that SAL-RNAs play direct regulatory roles in this important cellular process.

169 citations


Cited by
More filters
Journal ArticleDOI
06 Jun 2013-Cell
TL;DR: Nine tentative hallmarks that represent common denominators of aging in different organisms are enumerated, with special emphasis on mammalian aging, to identify pharmaceutical targets to improve human health during aging, with minimal side effects.

9,980 citations

Journal ArticleDOI
Lorenzo Galluzzi1, Lorenzo Galluzzi2, Ilio Vitale3, Stuart A. Aaronson4  +183 moreInstitutions (111)
TL;DR: The Nomenclature Committee on Cell Death (NCCD) has formulated guidelines for the definition and interpretation of cell death from morphological, biochemical, and functional perspectives.
Abstract: Over the past decade, the Nomenclature Committee on Cell Death (NCCD) has formulated guidelines for the definition and interpretation of cell death from morphological, biochemical, and functional perspectives. Since the field continues to expand and novel mechanisms that orchestrate multiple cell death pathways are unveiled, we propose an updated classification of cell death subroutines focusing on mechanistic and essential (as opposed to correlative and dispensable) aspects of the process. As we provide molecularly oriented definitions of terms including intrinsic apoptosis, extrinsic apoptosis, mitochondrial permeability transition (MPT)-driven necrosis, necroptosis, ferroptosis, pyroptosis, parthanatos, entotic cell death, NETotic cell death, lysosome-dependent cell death, autophagy-dependent cell death, immunogenic cell death, cellular senescence, and mitotic catastrophe, we discuss the utility of neologisms that refer to highly specialized instances of these processes. The mission of the NCCD is to provide a widely accepted nomenclature on cell death in support of the continued development of the field.

3,301 citations

Journal ArticleDOI
16 Jan 2014-Nature
TL;DR: Understanding this novel RNA crosstalk will lead to significant insight into gene regulatory networks and have implications in human development and disease.
Abstract: Recent reports have described an intricate interplay among diverse RNA species, including protein-coding messenger RNAs and non-coding RNAs such as long non-coding RNAs, pseudogenes and circular RNAs. These RNA transcripts act as competing endogenous RNAs (ceRNAs) or natural microRNA sponges — they communicate with and co-regulate each other by competing for binding to shared microRNAs, a family of small non-coding RNAs that are important post-transcriptional regulators of gene expression. Understanding this novel RNA crosstalk will lead to significant insight into gene regulatory networks and have implications in human development and disease.

2,869 citations

Journal ArticleDOI
14 May 2007-Oncogene
TL;DR: Recent findings and hypotheses on the role of MAPK pathways in cancer are discussed, with a focus on stress-activated pathways, which largely seem to counteract malignant transformation.
Abstract: Cancer can be perceived as a disease of communication between and within cells. The aberrations are pleiotropic, but mitogen-activated protein kinase (MAPK) pathways feature prominently. Here, we discuss recent findings and hypotheses on the role of MAPK pathways in cancer. Cancerous mutations in MAPK pathways are frequently mostly affecting Ras and B-Raf in the extracellular signal-regulated kinase pathway. Stress-activated pathways, such as Jun N-terminal kinase and p38, largely seem to counteract malignant transformation. The balance and integration between these signals may widely vary in different tumours, but are important for the outcome and the sensitivity to drug therapy.

2,605 citations

Journal ArticleDOI
TL;DR: The function of lncRNAs in developmental processes, such as in dosage compensation, genomic imprinting, cell differentiation and organogenesis, with a particular emphasis on mammalian development are described.
Abstract: Genomes of multicellular organisms are characterized by the pervasive expression of different types of non-coding RNAs (ncRNAs). Long ncRNAs (lncRNAs) belong to a novel heterogeneous class of ncRNAs that includes thousands of different species. lncRNAs have crucial roles in gene expression control during both developmental and differentiation processes, and the number of lncRNA species increases in genomes of developmentally complex organisms, which highlights the importance of RNA-based levels of control in the evolution of multicellular organisms. In this Review, we describe the function of lncRNAs in developmental processes, such as in dosage compensation, genomic imprinting, cell differentiation and organogenesis, with a particular emphasis on mammalian development.

2,464 citations