scispace - formally typeset
Search or ask a question
Author

Kothandaraman Ramanujam

Other affiliations: Michigan State University
Bio: Kothandaraman Ramanujam is an academic researcher from Indian Institute of Technology Madras. The author has contributed to research in topics: Catalysis & Chemistry. The author has an hindex of 12, co-authored 67 publications receiving 544 citations. Previous affiliations of Kothandaraman Ramanujam include Michigan State University.

Papers published on a yearly basis

Papers
More filters
Journal ArticleDOI
04 Jun 2017-Ionics
Abstract: In this work, two 2, 5-disubstituted and three 2, 3, 5-trisubstituted thiophene-based organic dyes have been investigated using the density functional theory Although substitution at the 3-position of thiophene ring may retard the back electron transfer, the loss of coplanarity affected the intramolecular charge transfer The natural bond orbital (NBO) analysis of dye-(TiO2)8 cluster has been performed to study the feasibility of electron injection The highest driving force of dye regeneration, higher negative NBO value of cyanoacrylic acid (CA) attached to the (TiO2)8 cluster (CA-(TiO2)8 moiety), and reasonably higher open-circuit voltage make (E)-2-cyano-3-(5′-(4-(diphenylamino)phenyl)-[2,2′-bithiophen]-5-yl)acrylic acid (D1) to perform as an effective light harvester in dye-sensitized solar cells The outcomes of this theoretical study are in good agreement with the experimental data reported

19 citations

Journal ArticleDOI
TL;DR: A series of (D-π)2-An-A based organic dyes containing a boron dipyrromethene (BODIPY) moiety as an ancillary acceptor (An) derivative were chosen, and the effect of donor moieties (diarylamine, carbazole, azepine, and dibenzazepine) was investigated to understand their photophysical and photoelectrochemical properties by employing density functional theory (DFT) and time-dependent DFT as mentioned in this paper.
Abstract: A series of (D-π)2–An–A based organic dyes containing a boron dipyrromethene (BODIPY) moiety as an ancillary acceptor (An) derivative were chosen, and the effect of donor moieties (diarylamine, carbazole, azepine, and dibenzazepine) was investigated to understand their photophysical and photoelectrochemical properties by employing density functional theory (DFT) and time-dependent DFT. It is experimentally proved that BODIPY enhances light-harvesting in the red and near IR regions of visible light. Electron density distribution analysis was performed for all the dyes to confirm the intramolecular charge transfer, envisioned from the simulated absorption spectra of the dyes. Carbazole donor-based dyes exhibited the lowest reorganization energy. A dye attached to the TiO2(1 0 1) surface was modeled to estimate the adsorption energy of the dyes. The density of states analysis revealed that the absence of defect states in the bandgap of TiO2 facilitates smooth electron transfer from the excited state of the dye to the conduction band of TiO2. Considering the lowest unoccupied molecular orbital (LUMO) energy level of the dyes and the conduction band energy level of TiO2, it is understood that all the dyes studied in this report are capable of electron injection upon photoexcitation. Considering the driving force for dye regeneration and the magnitude of reorganization energy, a carbazole donor-based dye (D2) would be the best performing dye in DSSCs. Previously, the power conversion efficiencies of the dyes have been reported, and the carbazole donor-based dye (D2) exhibited the highest efficiency among all the dyes. Our computational investigations are in good agreement with the experimental results.

18 citations

Journal ArticleDOI
TL;DR: In this article , a co-precipitation method was proposed to create highly efficient and long-lasting electrocatalysts for oxygen reduction reactions in an alkaline medium.
Abstract: To replace the existing noble-metal-based catalysts, developing highly efficient, stable electrocatalysts for oxygen reduction reactions for the increased current generation with lower overpotential is a demanding undertaking. In the present work, CuO-NiO/rGO nanocomposites were prepared using simple, cost-effective Co-precipitation methods. They act as highly effective electrocatalysts for oxygen reduction reactions in an alkaline medium. The structural characterizations demonstrate that prepared nanoparticles (≈13 nm) are tightly and effectively organized on reduced graphene oxide sheets. The electrochemical properties of the CuO, NiO nanoparticles and CuO-NiO, CuO-NiO/rGO nanocomposites were investigated. The results of the CuO-NiO/rGO nanocomposites revealed the high current density (2.9 × 10-4 mA cm-2), lower Tafel slope (72 mV dec-1) and low hydrogen peroxide yield (15%) when compared to other prepared materials (CuO, NiO, and CuO-NiO). The reduced graphene oxide increases an electron transfer during the ORR process, while the CuO-NiO has variable oxidation states that promote electro-rich features. With the combination of CuO-NiO and rGO, the hybrid electrocatalysts specific surface area and charge transfer rate drastically increase. The investigations of the rotating ring-disk electrodes experiments indicate that the oxygen reduction process takes place on CuO-NiO/rGO through an efficient four-electron pathway. Our results propose a new approach to creating highly efficient and long-lasting electrocatalysts.

17 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This comprehensive Review focuses on the low- and non-platinum electrocatalysts including advanced platinum alloys, core-shell structures, palladium-based catalysts, metal oxides and chalcogenides, carbon-based non-noble metal catalysts and metal-free catalysts.
Abstract: The recent advances in electrocatalysis for oxygen reduction reaction (ORR) for proton exchange membrane fuel cells (PEMFCs) are thoroughly reviewed. This comprehensive Review focuses on the low- and non-platinum electrocatalysts including advanced platinum alloys, core–shell structures, palladium-based catalysts, metal oxides and chalcogenides, carbon-based non-noble metal catalysts, and metal-free catalysts. The recent development of ORR electrocatalysts with novel structures and compositions is highlighted. The understandings of the correlation between the activity and the shape, size, composition, and synthesis method are summarized. For the carbon-based materials, their performance and stability in fuel cells and comparisons with those of platinum are documented. The research directions as well as perspectives on the further development of more active and less expensive electrocatalysts are provided.

2,964 citations

Journal ArticleDOI
TL;DR: In this review, the recent advances in the application of MOFs in heterogeneous catalysis are discussed and the personal view on future research directions is wrapped up.
Abstract: More than 95% (in volume) of all of today’s chemical products are manufactured through catalytic processes, making research into more efficient catalytic materials a thrilling and very dynamic rese...

772 citations

Journal ArticleDOI
TL;DR: This review describes the imprinted polymer production processes, the techniques used for reporting, and the applications of the reported sensors, including those designed to detect toxic chemicals, toxins in foods, drugs, explosives, and pathogens.
Abstract: Molecularly imprinted polymers are synthetic receptors for a targeted molecule. As such, they are analogues of the natural antibody–antigen systems. In this review, after a recounting of the early history of the general field, we specifically focus on the application of these polymers as sensors. In these applications, the polymers are paired with a reporting system, which may be electrical, electrochemical, optical, or gravimetric. The presence of the targeted molecule effects a change in the reporting agent, and a calibrated quantity of the target is recorded. In this review, we describe the imprinted polymer production processes, the techniques used for reporting, and the applications of the reported sensors. A brief survey of recent applications to gas-phase sensing is included, but the focus is primarily on the development of sensors for targets in solution. Included among the applications are those designed to detect toxic chemicals, toxins in foods, drugs, explosives, and pathogens. The application...

749 citations

Journal ArticleDOI
TL;DR: A comprehensive review of recent advances in the field of oxygen reduction electrocatalysis utilizing nonprecious metal catalysts is presented and suggestions and direction for future research to develop and understand NPM catalysts with enhanced ORR activity are provided.
Abstract: A comprehensive review of recent advances in the field of oxygen reduction electrocatalysis utilizing nonprecious metal (NPM) catalysts is presented Progress in the synthesis and characterization of pyrolyzed catalysts, based primarily on the transition metals Fe and Co with sources of N and C, is summarized Several synthetic strategies to improve the catalytic activity for the oxygen reduction reaction (ORR) are highlighted Recent work to explain the active-site structures and the ORR mechanism on pyrolyzed NPM catalysts is discussed Additionally, the recent application of Cu-based catalysts for the ORR is reviewed Suggestions and direction for future research to develop and understand NPM catalysts with enhanced ORR activity are provided

591 citations

17 Feb 2006
TL;DR: In this paper, the authors compared the performance of carbon nanotubes (MWNTs) and Vulcan XC-72 in terms of surface oxide formation and 30% lower corrosion current.
Abstract: Abstract Electrochemical surface oxidation of carbon black Vulcan XC-72 and multiwalled carbon nanotube (MWNT) has been compared following potentiostatic treatments up to 168 h under condition simulating PEMFC cathode environment (60 °C, N2 purged 0.5 M H2SO4, and a constant potential of 0.9 V). The subsequent electrochemical characterization at different treatment time intervals suggests that MWNT is electrochemically more stable than Vulcan XC-72 with less surface oxide formation and 30% lower corrosion current under the investigated condition. As a result of high corrosion resistance, MWNT shows lower loss of Pt surface area and oxygen reduction reaction activity when used as fuel cell catalyst support.

536 citations