scispace - formally typeset
Search or ask a question
Author

Kouichi Maruyama

Other affiliations: Northwestern University
Bio: Kouichi Maruyama is an academic researcher from Tohoku University. The author has contributed to research in topics: Creep & Grain boundary. The author has an hindex of 31, co-authored 216 publications receiving 5623 citations. Previous affiliations of Kouichi Maruyama include Northwestern University.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, fine-grained alloys of Mg-3Al-1Zn-0.2Mn in wt.% were obtained by an equal-channel angular extrusion technique and subsequent annealing at elevated temperatures.

1,193 citations

Journal ArticleDOI
TL;DR: In this article, the authors reviewed the creep deformation resistance and rupture life of high Cr ferritic steel with a tempered martensitic lath structure, and focused on the following three subjects: creep mechanism of the ferritic steels, its alloy design for further strengthening, and loss of its creep rupture strength after long-term use.
Abstract: The creep deformation resistance and rupture life of high Cr ferritic steel with a tempered martensitic lath structure are critically reviewed on the basis of experimental data. Special attention is directed to the following three subjects: creep mechanism of the ferritic steel, its alloy design for further strengthening, and loss of its creep rupture strength after long-term use. The high Cr ferritic steel is characterized by its fine subgrain structure with a high density of free dislocations within the subgrains. The dislocation substructure is the most densely distributed obstacle to dislocation motion in the steel. Its recovery controls creep rate and rupture life at elevated temperatures. Improvement of creep strength of the steel requires a fine subgrain structure with a high density of free dislocations. A sufficient number of pinning particles (MX particles in subgrain interior and M 23 C 6 particles on sub-boundaries) are necessary to cancel a large driving force for recovery due to the high dislocation density. Coarsening and agglomeration of the pinning particles have to be delayed by an appropriate alloy design of the steel. Creep rupture strength of the high Cr ferritic steel decreases quickly after long-term use. A significant improvement of creep rupture strength can be achieved if we can prevent the loss of rupture strength. In the steel tempered at high temperature, enhanced recovery of the subgrain structure along grain boundaries is the cause of the premature failure and the consequent loss of rupture strength. However, the scenario is not always applicable. Further studies are needed to solve this important problem of high Cr ferritic steel. MX particles are necessary to retain a fine subgrain structure and to achieve the excellent creep strength of the high Cr ferritic steel. Strengthening mechanism of the MX particles is another important problem left unsolved.

610 citations

Journal ArticleDOI
Junichi Koike1, R. Ohyama1, T. Kobayashi1, Motohiko Suzuki1, Kouichi Maruyama1 
TL;DR: In this paper, a tensile testing of AZ31 Mg alloys was conducted at temperatures ranging from room temperature to 523K, and the occurrence of grain-boundary sliding (GBS) at room temperature was demonstrated by the displacement of scribed lines across grain boundaries of deformed samples.
Abstract: Rolled sheets of AZ31 Mg alloys were subjected to tensile testing at temperatures ranging from room temperature to 523K The occurrence of grain-boundary sliding (GBS) at room temperature was demonstrated by the displacement of scribed lines across grain boundaries of deformed samples Surface relief of deformed samples was measured by use of a scanning laser microscope GBS strain was calculated from the measured surface step height, and its temperature dependence was analyzed by a Dorn-type constitutive equation GBS above 423K was found to be pure GBS that was activated by resolved applied shear stress acting on grain boundaries The activation energy for GBS was found to be 80 kJ/mol, which is in agreement with the activation energy for grain boundary diffusion Meanwhile, GBS below 373K was found to be slipinduced GBS, and its extent was found to be significantly greater than that expected from extrapolation of high-temperature values The slipinduced GBS is considered to occur by plastic compatibility conditions in the presence of plastic strain anisotropy and by absorption and dissociation of lattice dislocations at grain boundaries

275 citations

Journal ArticleDOI
TL;DR: In this paper, the authors found that Laves phase precipitates and grows during creep exposure, and the brittle fracture causes the breakdown of the brittle intergranular fracture in high-cr ferritic steels.
Abstract: Premature breakdown of creep strength is a serious problem to be solved in long-term creep of advanced high Cr ferritic steels. The material studied was ASTM grade 92 steel crept at 550–650 °C for up to 63 151 h. Stress exponent for rupture life decreases from 17 in short-term creep to 8 in long-term creep, confirming the breakdown in the steel. The steel shows ductile to brittle transition with increasing rupture life, and the breakdown accords with the onset of brittle intergranular fracture. Creep cavities are nucleated at coarse precipitates of Laves phase along grain boundaries. These findings suggest the following story of the breakdown of creep strength. Laves phase precipitates and grows during creep exposure. Coarsening of Laves phase particles over a critical size triggers the cavity formation and the consequent brittle intergranular fracture. The brittle fracture causes the breakdown. The coarsening of Laves phase can be detected non-destructively by means of hardness testing of the steel exposed to elevated temperature without stress.

226 citations

Journal ArticleDOI
TL;DR: The addition of zinc is effective in improving the creep strength of Mg-Y solid solution alloys at temperatures 550-650 K as discussed by the authors, because zinc suppresses the non-basal slip that operates predominantly at such temperatures.

205 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, a combination of experimental and simulation techniques were used to investigate the plastic behavior of wrought magnesium alloy and found that an increased activity of non-basal dislocations provides a self-consistent explanation for the observed changes in the anisotropy with increasing temperature.

1,427 citations

Journal ArticleDOI
TL;DR: In this paper, fine-grained alloys of Mg-3Al-1Zn-0.2Mn in wt.% were obtained by an equal-channel angular extrusion technique and subsequent annealing at elevated temperatures.

1,193 citations

Journal ArticleDOI
TL;DR: In this paper, a review of precipitation in most precipitation-hardenable magnesium alloys is reviewed, and its relationship with strengthening is examined, and it is demonstrated that the precipitation phenomena in these alloys, especially in the very early stage of the precipitation process, are still far from being well understood, and many fundamental issues remain unsolved even after some extensive and concerted efforts made in the past 12 years.
Abstract: Magnesium alloys have received an increasing interest in the past 12 years for potential applications in the automotive, aircraft, aerospace, and electronic industries. Many of these alloys are strong because of solid-state precipitates that are produced by an age-hardening process. Although some strength improvements of existing magnesium alloys have been made and some novel alloys with improved strength have been developed, the strength level that has been achieved so far is still substantially lower than that obtained in counterpart aluminum alloys. Further improvements in the alloy strength require a better understanding of the structure, morphology, orientation of precipitates, effects of precipitate morphology, and orientation on the strengthening and microstructural factors that are important in controlling the nucleation and growth of these precipitates. In this review, precipitation in most precipitation-hardenable magnesium alloys is reviewed, and its relationship with strengthening is examined. It is demonstrated that the precipitation phenomena in these alloys, especially in the very early stage of the precipitation process, are still far from being well understood, and many fundamental issues remain unsolved even after some extensive and concerted efforts made in the past 12 years. The challenges associated with precipitation hardening and age hardening are identified and discussed, and guidelines are outlined for the rational design and development of higher strength, and ultimately ultrahigh strength, magnesium alloys via precipitation hardening.

1,174 citations

Journal ArticleDOI
TL;DR: In this article, a series of tensile test results are reported for the common wrought alloy AZ31 and a simple constitutive model is employed to argue that View the MathML source twinning (which gives extension along the c-axis) can increase the uniform elongation in tensile tests.
Abstract: Magnesium and its alloys do not in general undergo the same extended range of plasticity as their competitor structural metals. The present work is part I of a study that examines some of the roles deformation twinning might play in the phenomenon. A series of tensile test results are reported for the common wrought alloy AZ31. These data are employed in conjunction with a simple constitutive model to argue that View the MathML source twinning (which gives extension along the c-axis) can increase the uniform elongation in tensile tests. This effect appears to be similar to that seen in Ti, Zr and Cu–Si and in the so called TWIP phenomenon in steel.

1,102 citations

Journal ArticleDOI
TL;DR: Friction stir welding (FSW) is an emerging metalworking technique that can provide localized modification and control of microstructures in near-surface layers of processed metallic components.
Abstract: Friction stir processing (FSP), developed based on the basic principles of friction stir welding (FSW), a solid-state joining process originally developed for aluminum alloys, is an emerging metalworking technique that can provide localized modification and control of microstructures in near-surface layers of processed metallic components. The FSP causes intense plastic deformation, material mixing, and thermal exposure, resulting in significant microstructural refinement, densification, and homogeneity of the processed zone. The FSP technique has been successfully used for producing the fine-grained structure and surface composite, modifying the microstructure of materials, and synthesizing the composite and intermetallic compound in situ. In this review article, the current state of the understanding and development of FSP is addressed.

955 citations