scispace - formally typeset
Search or ask a question
Author

Kozo Fujii

Bio: Kozo Fujii is an academic researcher from Tokyo University of Science. The author has contributed to research in topics: Airfoil & Plasma actuator. The author has an hindex of 39, co-authored 411 publications receiving 5845 citations. Previous affiliations of Kozo Fujii include National Aerospace Laboratories & University of Twente.


Papers
More filters
Journal ArticleDOI
TL;DR: VPA was confirmed to be an orally active and long-term acting insulin-mimetic vanadyl complex to treat insulin-dependent diabetes mellitus (IDDM) in rats.

195 citations

Journal ArticleDOI
TL;DR: The excellent freestream and vortex preservation properties of WCNS when used with the numerical technique, compared with those of WENO, are shown for the first time.

174 citations

Journal ArticleDOI
TL;DR: The first phase of the XMASS experiment searches for dark matter in detail, including its configuration, data acquisition equipment and calibration system in this article, where the authors describe the X-MASS detector in detail.
Abstract: The XMASS project aims to detect dark matter, pp and $^{7}$Be solar neutrinos, and neutrinoless double beta decay using ultra pure liquid xenon The first phase of the XMASS experiment searches for dark matter In this paper, we describe the XMASS detector in detail, including its configuration, data acquisition equipment and calibration system

118 citations

Journal ArticleDOI
TL;DR: In this paper, a 3D flow induced by a high-speed train moving into a tunnel is studied by the computation of the compressible Navier-Stokes equations with the zonal method, and the transient flow field induced by tunnel entry is investigated with the focus on the compression wave which is the source of the booming noise at the tunnel exit.

117 citations

Journal ArticleDOI
TL;DR: In this article, wind-induced vibrations of two actual tall towers were reduced to about half upon installation of newly developed Tuned Sloshing Damper, which utilizes liquid motion in circular container.

117 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors provide a concise point of departure for researchers and practitioners alike wishing to assess the current state of the art in the control and monitoring of civil engineering structures, and provide a link between structural control and other fields of control theory.
Abstract: This tutorial/survey paper: (1) provides a concise point of departure for researchers and practitioners alike wishing to assess the current state of the art in the control and monitoring of civil engineering structures; and (2) provides a link between structural control and other fields of control theory, pointing out both differences and similarities, and points out where future research and application efforts are likely to prove fruitful. The paper consists of the following sections: section 1 is an introduction; section 2 deals with passive energy dissipation; section 3 deals with active control; section 4 deals with hybrid and semiactive control systems; section 5 discusses sensors for structural control; section 6 deals with smart material systems; section 7 deals with health monitoring and damage detection; and section 8 deals with research needs. An extensive list of references is provided in the references section.

1,883 citations

Book
01 Jan 2015
TL;DR: This updated edition includes new worked programming examples, expanded coverage and recent literature regarding incompressible flows, the Discontinuous Galerkin Method, the Lattice Boltzmann Method, higher-order spatial schemes, implicit Runge-Kutta methods and code parallelization.
Abstract: Computational Fluid Dynamics: Principles and Applications, Third Edition presents students, engineers, and scientists with all they need to gain a solid understanding of the numerical methods and principles underlying modern computation techniques in fluid dynamics By providing complete coverage of the essential knowledge required in order to write codes or understand commercial codes, the book gives the reader an overview of fundamentals and solution strategies in the early chapters before moving on to cover the details of different solution techniques This updated edition includes new worked programming examples, expanded coverage and recent literature regarding incompressible flows, the Discontinuous Galerkin Method, the Lattice Boltzmann Method, higher-order spatial schemes, implicit Runge-Kutta methods and parallelization An accompanying companion website contains the sources of 1-D and 2-D Euler and Navier-Stokes flow solvers (structured and unstructured) and grid generators, along with tools for Von Neumann stability analysis of 1-D model equations and examples of various parallelization techniques Will provide you with the knowledge required to develop and understand modern flow simulation codes Features new worked programming examples and expanded coverage of incompressible flows, implicit Runge-Kutta methods and code parallelization, among other topics Includes accompanying companion website that contains the sources of 1-D and 2-D flow solvers as well as grid generators and examples of parallelization techniques

1,228 citations

Journal ArticleDOI
TL;DR: Aqueous V(III) Chemistry 877 6.2.1.
Abstract: 6.1.2. Aqueous V(III) Chemistry 877 6.1.3. Oxidation State of Vanadium in Tunicates 878 6.1.4. Uptake of Vanadate into Tunicates 879 6.1.5. Vanadium Binding Proteins: Vanabins 879 6.1.6. Model Complexes and Their Chemistry 880 6.1.7. Catechol-Based Model Chemistry 880 6.1.8. Vanadium Sulfate Complexes 881 6.2. Fan Worm Pseudopotamilla occelata 883 7. Vanadium Nitrogenase 883 7.1. Nitrogenases 883 7.2. Biochemistry of Nitrogenase 884 7.3. Clusters in Nitrogenase and Model Systems: Structure and Reactivity 885

1,184 citations

Journal ArticleDOI
TL;DR: In the proposed algorithm, a scalarization approach, termed angle-penalized distance, is adopted to balance convergence and diversity of the solutions in the high-dimensional objective space, and reference vectors are effective and cost-efficient for preference articulation, which is particularly desirable for many-objective optimization.
Abstract: In evolutionary multiobjective optimization, maintaining a good balance between convergence and diversity is particularly crucial to the performance of the evolutionary algorithms (EAs). In addition, it becomes increasingly important to incorporate user preferences because it will be less likely to achieve a representative subset of the Pareto-optimal solutions using a limited population size as the number of objectives increases. This paper proposes a reference vector-guided EA for many-objective optimization. The reference vectors can be used not only to decompose the original multiobjective optimization problem into a number of single-objective subproblems, but also to elucidate user preferences to target a preferred subset of the whole Pareto front (PF). In the proposed algorithm, a scalarization approach, termed angle-penalized distance, is adopted to balance convergence and diversity of the solutions in the high-dimensional objective space. An adaptation strategy is proposed to dynamically adjust the distribution of the reference vectors according to the scales of the objective functions. Our experimental results on a variety of benchmark test problems show that the proposed algorithm is highly competitive in comparison with five state-of-the-art EAs for many-objective optimization. In addition, we show that reference vectors are effective and cost-efficient for preference articulation, which is particularly desirable for many-objective optimization. Furthermore, a reference vector regeneration strategy is proposed for handling irregular PFs. Finally, the proposed algorithm is extended for solving constrained many-objective optimization problems.

1,020 citations

Book
19 May 2005
TL;DR: In this article, the authors present a detailed review of liquid sloshing dynamics in rigid containers, including linear forced and non-linear interaction under external and parametric excitations.
Abstract: Preface Introduction 1. Fluid field equations and modal analysis in rigid containers 2. Linear forced sloshing 3. Viscous damping and sloshing suppression devices 4. Weakly nonlinear lateral sloshing 5. Equivalent mechanical models 6. Parametric sloshing (Faraday's waves) 7. Dynamics of liquid sloshing impact 8. Linear interaction of liquid sloshing with elastic containers 9. Nonlinear interaction under external and parametric excitations 10. Interactions with support structures and tuned sloshing absorbers 11. Dynamics of rotating fluids 12. Microgravity sloshing dynamics Bibliography Index.

920 citations