scispace - formally typeset
Search or ask a question
Author

Kozo Kaibuchi

Bio: Kozo Kaibuchi is an academic researcher from Nagoya University. The author has contributed to research in topics: Rho-associated protein kinase & Phosphorylation. The author has an hindex of 129, co-authored 493 publications receiving 60461 citations. Previous affiliations of Kozo Kaibuchi include Nara Institute of Science and Technology & Indiana University – Purdue University Indianapolis.


Papers
More filters
Journal ArticleDOI
TL;DR: Kinetic analysis indicates that TPA can substitute for diacylglycerol and greatly increases the affinity of the enzyme for Ca2+ as well as for phospholipid, and various phorbol derivatives which have been shown to be active in tumor promotion are also capable of activating this protein kinase in in vitro systems.

4,562 citations

Journal ArticleDOI
12 Jul 1996-Science
TL;DR: Rho appears to inhibit myosin phosphatase through the action of Rho-kinase, which is activated by GTP·RhoA, phosphorylation of MBS and MLC in NIH 3T3 cells.
Abstract: The small guanosine triphosphatase Rho is implicated in myosin light chain (MLC) phosphorylation, which results in contraction of smooth muscle and interaction of actin and myosin in nonmuscle cells. The guanosine triphosphate (GTP)-bound, active form of RhoA (GTP.RhoA) specifically interacted with the myosin-binding subunit (MBS) of myosin phosphatase, which regulates the extent of phosphorylation of MLC. Rho-associated kinase (Rho-kinase), which is activated by GTP.RhoA, phosphorylated MBS and consequently inactivated myosin phosphatase. Overexpression of RhoA or activated RhoA in NIH 3T3 cells increased phosphorylation of MBS and MLC. Thus, Rho appears to inhibit myosin phosphatase through the action of Rho-kinase.

2,899 citations

Journal ArticleDOI
TL;DR: The phosphorylation of MLC by Rho-kinase resulted in the facilitation of the actin activation of myosin ATPase, which may partly account for the mechanism by which Rho regulates cytokinesis, cell motility, or smooth muscle contraction.

2,017 citations

Journal ArticleDOI
28 Feb 1997-Science
TL;DR: Rho-kinase appears to mediate signals from Rho and to induce the formation of stress fibers and focal adhesions.
Abstract: The small guanosine triphosphatase (GTPase) Rho is implicated in the formation of stress fibers and focal adhesions in fibroblasts stimulated by extracellular signals such as lysophosphatidic acid (LPA). Rho-kinase is activated by Rho and may mediate some biological effects of Rho. Microinjection of the catalytic domain of Rho-kinase into serum-starved Swiss 3T3 cells induced the formation of stress fibers and focal adhesions, whereas microinjection of the inactive catalytic domain, the Rho-binding domain, or the pleckstrin-homology domain inhibited the LPA-induced formation of stress fibers and focal adhesions. Thus, Rho-kinase appears to mediate signals from Rho and to induce the formation of stress fibers and focal adhesions.

1,131 citations

Journal ArticleDOI
TL;DR: P purified a Rho‐interacting protein with a molecular mass of approximately 164 kDa (p164) from bovine brain that bound to GTPgammaS (a non‐hydrolyzable GTP analog) and is likely to be a putative target serine/threonine kinase for Rho and serves as a mediator of the RHo‐dependent signaling pathway.
Abstract: The small GTP binding protein Rho is implicated in cytoskeletal responses to extracellular signals such as lysophosphatidic acid to form stress fibers and focal contacts. Here we have purified a Rho-interacting protein with a molecular mass of approximately 164 kDa (p164) from bovine brain. This protein bound to GTPgammaS (a non-hydrolyzable GTP analog).RhoA but not to GDP.RhoA or GTPgammaS.RhoA with a mutation in the effector domain (RhoAA37).p164 had a kinase activity which was specifically stimulated by GTPgammaS.RhoA. We obtained the cDNA encoding p164 on the basis of its partial amino acid sequences and named it Rho-associated kinase (Rho-kinase). Rho-kinase has a catalytic domain in the N-terminal portion, a coiled coil domain in the middle portion and a zinc finger-like motif in the C-terminal portion. The catalytic domain shares 72% sequence homology with that of myotonic dystrophy kinase and the coiled coil domain contains a Rho-interacting interface. When COS7 cells were cotransfected with Rho-kinase and activated RhoA, some Rho-kinase was recruited to membranes. Thus it is likely that Rho-kinase is a putative target serine/threonine kinase for Rho and serves as a mediator of the Rho-dependent signaling pathway.

1,076 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
25 Nov 2009-Cell
TL;DR: The mesenchymal state is associated with the capacity of cells to migrate to distant organs and maintain stemness, allowing their subsequent differentiation into multiple cell types during development and the initiation of metastasis.

8,642 citations

Journal ArticleDOI
01 Apr 1984-Nature
TL;DR: Protein kinase C probably serves as a receptor for the tumour promoters and further exploration of the roles of this enzyme may provide clues for understanding the mechanism of cell growth and differentiation.
Abstract: Protein kinase C has a crucial role in signal transduction for a variety of biologically active substances which activate cellular functions and proliferation. When cells are stimulated, protein kinase C is transiently activated by diacylglycerol which is produced in the membrane during the signal-induced turnover of inositol phospholipids. Tumour-promoting phorbol esters, when intercalated into the cell membrane, may substitute for diacylglycerol and permanently activate protein kinase C. The enzyme probably serves as a receptor for the tumour promoters. Further exploration of the roles of this enzyme may provide clues for understanding the mechanism of cell growth and differentiation.

6,917 citations

Journal ArticleDOI
Stephan Ripke1, Stephan Ripke2, Benjamin M. Neale2, Benjamin M. Neale1  +351 moreInstitutions (102)
24 Jul 2014-Nature
TL;DR: Associations at DRD2 and several genes involved in glutamatergic neurotransmission highlight molecules of known and potential therapeutic relevance to schizophrenia, and are consistent with leading pathophysiological hypotheses.
Abstract: Schizophrenia is a highly heritable disorder. Genetic risk is conferred by a large number of alleles, including common alleles of small effect that might be detected by genome-wide association studies. Here we report a multi-stage schizophrenia genome-wide association study of up to 36,989 cases and 113,075 controls. We identify 128 independent associations spanning 108 conservatively defined loci that meet genome-wide significance, 83 of which have not been previously reported. Associations were enriched among genes expressed in brain, providing biological plausibility for the findings. Many findings have the potential to provide entirely new insights into aetiology, but associations at DRD2 and several genes involved in glutamatergic neurotransmission highlight molecules of known and potential therapeutic relevance to schizophrenia, and are consistent with leading pathophysiological hypotheses. Independent of genes expressed in brain, associations were enriched among genes expressed in tissues that have important roles in immunity, providing support for the speculated link between the immune system and schizophrenia.

6,809 citations