scispace - formally typeset
Search or ask a question
Author

Krina T. Zondervan

Bio: Krina T. Zondervan is an academic researcher from University of Oxford. The author has contributed to research in topics: Endometriosis & Genome-wide association study. The author has an hindex of 66, co-authored 184 publications receiving 18593 citations. Previous affiliations of Krina T. Zondervan include Wellcome Trust & Hong Kong Environmental Protection Department.


Papers
More filters
01 Jan 2015
TL;DR: This paper conducted a genome-wide association study and meta-analysis of body mass index (BMI), a measure commonly used to define obesity and assess adiposity, in up to 339,224 individuals.
Abstract: Obesity is heritable and predisposes to many diseases. To understand the genetic basis of obesity better, here we conduct a genome-wide association study and Metabochip meta-analysis of body mass index (BMI), a measure commonly used to define obesity and assess adiposity, in up to 339,224 individuals. This analysis identifies 97 BMI-associated loci (P 20% of BMI variation. Pathway analyses provide strong support for a role of the central nervous system in obesity susceptibility and implicate new genes and pathways, including those related to synaptic function, glutamate signalling, insulin secretion/action, energy metabolism, lipid biology and adipogenesis.

2,721 citations

Journal ArticleDOI
TL;DR: This protocol details the steps for data quality assessment and control that are typically carried out during case-control association studies, including the identification and removal of DNA samples and markers that introduce bias.
Abstract: This protocol details the steps for data quality assessment and control that are typically carried out during case-control association studies. The steps described involve the identification and removal of DNA samples and markers that introduce bias. These critical steps are paramount to the success of a case-control study and are necessary before statistically testing for association. We describe how to use PLINK, a tool for handling SNP data, to perform assessments of failure rate per individual and per SNP and to assess the degree of relatedness between individuals. We also detail other quality-control procedures, including the use of SMARTPCA software for the identification of ancestral outliers. These platforms were selected because they are user-friendly, widely used and computationally efficient. Steps needed to detect and establish a disease association using case-control data are not discussed here. Issues concerning study design and marker selection in case-control studies have been discussed in our earlier protocols. This protocol, which is routinely used in our labs, should take approximately 8 h to complete.

1,106 citations

Journal ArticleDOI
TL;DR: Endometriosis impairs HRQoL and work productivity across countries and ethnicities, yet women continue to experience diagnostic delays in primary care, and a higher index of suspicion is needed to expedite specialist assessment of symptomatic women.

1,007 citations

Journal ArticleDOI
Iris M. Heid1, Anne U. Jackson2, Joshua C. Randall3, Tthomas W. Winkler1  +352 moreInstitutions (90)
TL;DR: A meta-analysis of genome-wide association studies for WHR adjusted for body mass index provides evidence for multiple loci that modulate body fat distribution independent of overall adiposity and reveal strong gene-by-sex interactions.
Abstract: Waist-hip ratio (WHR) is a measure of body fat distribution and a predictor of metabolic consequences independent of overall adiposity. WHR is heritable, but few genetic variants influencing this trait have been identified. We conducted a meta-analysis of 32 genome-wide association studies for WHR adjusted for body mass index (comprising up to 77,167 participants), following up 16 loci in an additional 29 studies (comprising up to 113,636 subjects). We identified 13 new loci in or near RSPO3, VEGFA, TBX15-WARS2, NFE2L3, GRB14, DNM3-PIGC, ITPR2-SSPN, LY86, HOXC13, ADAMTS9, ZNRF3-KREMEN1, NISCH-STAB1 and CPEB4 (P = 1.9 × 10⁻⁹ to P = 1.8 × 10⁻⁴⁰) and the known signal at LYPLAL1. Seven of these loci exhibited marked sexual dimorphism, all with a stronger effect on WHR in women than men (P for sex difference = 1.9 × 10⁻³ to P = 1.2 × 10⁻¹³). These findings provide evidence for multiple loci that modulate body fat distribution independent of overall adiposity and reveal strong gene-by-sex interactions.

869 citations

Journal ArticleDOI
TL;DR: It is shown that at least 40% of the total heritable cis effect on expression cannot be accounted for by common cis variants, a finding that reveals the contribution of low-frequency and rare regulatory variants with respect to both transcriptional regulation and complex trait susceptibility.
Abstract: Sequence-based variation in gene expression is a key driver of disease risk. Common variants regulating expression in cis have been mapped in many expression quantitative trait locus (eQTL) studies, typically in single tissues from unrelated individuals. Here, we present a comprehensive analysis of gene expression across multiple tissues conducted in a large set of mono- and dizygotic twins that allows systematic dissection of genetic (cis and trans) and non-genetic effects on gene expression. Using identity-by-descent estimates, we show that at least 40% of the total heritable cis effect on expression cannot be accounted for by common cis variants, a finding that reveals the contribution of low-frequency and rare regulatory variants with respect to both transcriptional regulation and complex trait susceptibility. We show that a substantial proportion of gene expression heritability is trans to the structural gene, and we identify several replicating trans variants that act predominantly in a tissue-restricted manner and may regulate the transcription of many genes.

778 citations


Cited by
More filters
Journal ArticleDOI
Paul Burton1, David Clayton2, Lon R. Cardon, Nicholas John Craddock3  +192 moreInstitutions (4)
07 Jun 2007-Nature
TL;DR: This study has demonstrated that careful use of a shared control group represents a safe and effective approach to GWA analyses of multiple disease phenotypes; generated a genome-wide genotype database for future studies of common diseases in the British population; and shown that, provided individuals with non-European ancestry are excluded, the extent of population stratification in theBritish population is generally modest.
Abstract: There is increasing evidence that genome-wide association ( GWA) studies represent a powerful approach to the identification of genes involved in common human diseases. We describe a joint GWA study ( using the Affymetrix GeneChip 500K Mapping Array Set) undertaken in the British population, which has examined similar to 2,000 individuals for each of 7 major diseases and a shared set of similar to 3,000 controls. Case-control comparisons identified 24 independent association signals at P < 5 X 10(-7): 1 in bipolar disorder, 1 in coronary artery disease, 9 in Crohn's disease, 3 in rheumatoid arthritis, 7 in type 1 diabetes and 3 in type 2 diabetes. On the basis of prior findings and replication studies thus-far completed, almost all of these signals reflect genuine susceptibility effects. We observed association at many previously identified loci, and found compelling evidence that some loci confer risk for more than one of the diseases studied. Across all diseases, we identified a large number of further signals ( including 58 loci with single-point P values between 10(-5) and 5 X 10(-7)) likely to yield additional susceptibility loci. The importance of appropriately large samples was confirmed by the modest effect sizes observed at most loci identified. This study thus represents a thorough validation of the GWA approach. It has also demonstrated that careful use of a shared control group represents a safe and effective approach to GWA analyses of multiple disease phenotypes; has generated a genome-wide genotype database for future studies of common diseases in the British population; and shown that, provided individuals with non-European ancestry are excluded, the extent of population stratification in the British population is generally modest. Our findings offer new avenues for exploring the pathophysiology of these important disorders. We anticipate that our data, results and software, which will be widely available to other investigators, will provide a powerful resource for human genetics research.

9,244 citations

Journal ArticleDOI
John T. Lonsdale, Jeffrey Thomas, Mike Salvatore, Rebecca Phillips, Edmund Lo, Saboor Shad, Richard Hasz, Gary Walters, Fernando U. Garcia1, Nancy Young2, Barbara A. Foster3, Mike Moser3, Ellen Karasik3, Bryan Gillard3, Kimberley Ramsey3, Susan L. Sullivan, Jason Bridge, Harold Magazine, John Syron, Johnelle Fleming, Laura A. Siminoff4, Heather M. Traino4, Maghboeba Mosavel4, Laura Barker4, Scott D. Jewell5, Daniel C. Rohrer5, Dan Maxim5, Dana Filkins5, Philip Harbach5, Eddie Cortadillo5, Bree Berghuis5, Lisa Turner5, Eric Hudson5, Kristin Feenstra5, Leslie H. Sobin6, James A. Robb6, Phillip Branton, Greg E. Korzeniewski6, Charles Shive6, David Tabor6, Liqun Qi6, Kevin Groch6, Sreenath Nampally6, Steve Buia6, Angela Zimmerman6, Anna M. Smith6, Robin Burges6, Karna Robinson6, Kim Valentino6, Deborah Bradbury6, Mark Cosentino6, Norma Diaz-Mayoral6, Mary Kennedy6, Theresa Engel6, Penelope Williams6, Kenyon Erickson, Kristin G. Ardlie7, Wendy Winckler7, Gad Getz8, Gad Getz7, David S. DeLuca7, MacArthur Daniel MacArthur7, MacArthur Daniel MacArthur8, Manolis Kellis7, Alexander Thomson7, Taylor Young7, Ellen Gelfand7, Molly Donovan7, Yan Meng7, George B. Grant7, Deborah C. Mash9, Yvonne Marcus9, Margaret J. Basile9, Jun Liu8, Jun Zhu10, Zhidong Tu10, Nancy J. Cox11, Dan L. Nicolae11, Eric R. Gamazon11, Hae Kyung Im11, Anuar Konkashbaev11, Jonathan K. Pritchard11, Jonathan K. Pritchard12, Matthew Stevens11, Timothée Flutre11, Xiaoquan Wen11, Emmanouil T. Dermitzakis13, Tuuli Lappalainen13, Roderic Guigó, Jean Monlong, Michael Sammeth, Daphne Koller14, Alexis Battle14, Sara Mostafavi14, Mark I. McCarthy15, Manual Rivas15, Julian Maller15, Ivan Rusyn16, Andrew B. Nobel16, Fred A. Wright16, Andrey A. Shabalin16, Mike Feolo17, Nataliya Sharopova17, Anne Sturcke17, Justin Paschal17, James M. Anderson17, Elizabeth L. Wilder17, Leslie Derr17, Eric D. Green17, Jeffery P. Struewing17, Gary F. Temple17, Simona Volpi17, Joy T. Boyer17, Elizabeth J. Thomson17, Mark S. Guyer17, Cathy Ng17, Assya Abdallah17, Deborah Colantuoni17, Thomas R. Insel17, Susan E. Koester17, Roger Little17, Patrick Bender17, Thomas Lehner17, Yin Yao17, Carolyn C. Compton17, Jimmie B. Vaught17, Sherilyn Sawyer17, Nicole C. Lockhart17, Joanne P. Demchok17, Helen F. Moore17 
TL;DR: The Genotype-Tissue Expression (GTEx) project is described, which will establish a resource database and associated tissue bank for the scientific community to study the relationship between genetic variation and gene expression in human tissues.
Abstract: Genome-wide association studies have identified thousands of loci for common diseases, but, for the majority of these, the mechanisms underlying disease susceptibility remain unknown. Most associated variants are not correlated with protein-coding changes, suggesting that polymorphisms in regulatory regions probably contribute to many disease phenotypes. Here we describe the Genotype-Tissue Expression (GTEx) project, which will establish a resource database and associated tissue bank for the scientific community to study the relationship between genetic variation and gene expression in human tissues.

6,545 citations

Journal ArticleDOI
Kristin G. Ardlie, David S. DeLuca, Ayellet V. Segrè, Timothy J. Sullivan, Taylor Young, Ellen Gelfand, Casandra A. Trowbridge, Julian Maller, Taru Tukiainen, Monkol Lek, Lucas D. Ward, Pouya Kheradpour, Benjamin Iriarte, Yan Meng, Cameron D. Palmer, Tõnu Esko, Wendy Winckler, Joel N. Hirschhorn, Manolis Kellis, Daniel G. MacArthur, Gad Getz, Andrey A. Shabalin, Gen Li, Yi-Hui Zhou, Andrew B. Nobel, Ivan Rusyn, Fred A. Wright, Tuuli Lappalainen, Pedro G. Ferreira, Halit Ongen, Manuel A. Rivas, Alexis Battle, Sara Mostafavi, Jean Monlong, Michael Sammeth, Marta Melé, Ferran Reverter, Jakob M. Goldmann, Daphne Koller, Roderic Guigó, Mark I. McCarthy, Emmanouil T. Dermitzakis, Eric R. Gamazon, Hae Kyung Im, Anuar Konkashbaev, Dan L. Nicolae, Nancy J. Cox, Timothée Flutre, Xiaoquan Wen, Matthew Stephens, Jonathan K. Pritchard, Zhidong Tu, Bin Zhang, Tao Huang, Quan Long, Luan Lin, Jialiang Yang, Jun Zhu, Jun Liu, Amanda Brown, Bernadette Mestichelli, Denee Tidwell, Edmund Lo, Mike Salvatore, Saboor Shad, Jeffrey A. Thomas, John T. Lonsdale, Michael T. Moser, Bryan Gillard, Ellen Karasik, Kimberly Ramsey, Christopher Choi, Barbara A. Foster, John Syron, Johnell Fleming, Harold Magazine, Rick Hasz, Gary Walters, Jason Bridge, Mark Miklos, Susan L. Sullivan, Laura Barker, Heather M. Traino, Maghboeba Mosavel, Laura A. Siminoff, Dana R. Valley, Daniel C. Rohrer, Scott D. Jewell, Philip A. Branton, Leslie H. Sobin, Mary Barcus, Liqun Qi, Jeffrey McLean, Pushpa Hariharan, Ki Sung Um, Shenpei Wu, David Tabor, Charles Shive, Anna M. Smith, Stephen A. Buia, Anita H. Undale, Karna Robinson, Nancy Roche, Kimberly M. Valentino, Angela Britton, Robin Burges, Debra Bradbury, Kenneth W. Hambright, John Seleski, Greg E. Korzeniewski, Kenyon Erickson, Yvonne Marcus, Jorge Tejada, Mehran Taherian, Chunrong Lu, Margaret J. Basile, Deborah C. Mash, Simona Volpi, Jeffery P. Struewing, Gary F. Temple, Joy T. Boyer, Deborah Colantuoni, Roger Little, Susan E. Koester, Latarsha J. Carithers, Helen M. Moore, Ping Guan, Carolyn C. Compton, Sherilyn Sawyer, Joanne P. Demchok, Jimmie B. Vaught, Chana A. Rabiner, Nicole C. Lockhart 
08 May 2015-Science
TL;DR: The landscape of gene expression across tissues is described, thousands of tissue-specific and shared regulatory expression quantitative trait loci (eQTL) variants are cataloged, complex network relationships are described, and signals from genome-wide association studies explained by eQTLs are identified.
Abstract: Understanding the functional consequences of genetic variation, and how it affects complex human disease and quantitative traits, remains a critical challenge for biomedicine. We present an analysi...

4,418 citations

01 Feb 2015
TL;DR: In this article, the authors describe the integrative analysis of 111 reference human epigenomes generated as part of the NIH Roadmap Epigenomics Consortium, profiled for histone modification patterns, DNA accessibility, DNA methylation and RNA expression.
Abstract: The reference human genome sequence set the stage for studies of genetic variation and its association with human disease, but epigenomic studies lack a similar reference. To address this need, the NIH Roadmap Epigenomics Consortium generated the largest collection so far of human epigenomes for primary cells and tissues. Here we describe the integrative analysis of 111 reference human epigenomes generated as part of the programme, profiled for histone modification patterns, DNA accessibility, DNA methylation and RNA expression. We establish global maps of regulatory elements, define regulatory modules of coordinated activity, and their likely activators and repressors. We show that disease- and trait-associated genetic variants are enriched in tissue-specific epigenomic marks, revealing biologically relevant cell types for diverse human traits, and providing a resource for interpreting the molecular basis of human disease. Our results demonstrate the central role of epigenomic information for understanding gene regulation, cellular differentiation and human disease.

4,409 citations

Journal ArticleDOI
TL;DR: It is found that polygenicity accounts for the majority of the inflation in test statistics in many GWAS of large sample size, and the LD Score regression intercept can be used to estimate a more powerful and accurate correction factor than genomic control.
Abstract: Both polygenicity (many small genetic effects) and confounding biases, such as cryptic relatedness and population stratification, can yield an inflated distribution of test statistics in genome-wide association studies (GWAS). However, current methods cannot distinguish between inflation from a true polygenic signal and bias. We have developed an approach, LD Score regression, that quantifies the contribution of each by examining the relationship between test statistics and linkage disequilibrium (LD). The LD Score regression intercept can be used to estimate a more powerful and accurate correction factor than genomic control. We find strong evidence that polygenicity accounts for the majority of the inflation in test statistics in many GWAS of large sample size.

3,708 citations