scispace - formally typeset
Search or ask a question
Author

Krishna Pramanik

Bio: Krishna Pramanik is an academic researcher from National Institute of Technology, Rourkela. The author has contributed to research in topics: Fibroin & Bone tissue. The author has an hindex of 33, co-authored 105 publications receiving 4389 citations. Previous affiliations of Krishna Pramanik include Department of Biotechnology & Techno India.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the effect of temperature on the viscosity of biodiesel and jatropha oil was studied and the performance of a single cylinder C.I. engine using blends of varying proportions of Jatropha curcas oil and diesel was evaluated.

954 citations

Journal ArticleDOI
TL;DR: The data indicated that the chitosan coating of IONP result in interface that enhances ROS production, hence the antimicrobial activity.
Abstract: Investigating the interaction patterns at nano-bio interface is a key challenge for safe use of nanoparticles (NPs) to any biological system. The study intends to explore the role of interaction pattern at the iron oxide nanoparticle (IONP)-bacteria interface affecting antimicrobial propensity of IONP. To this end, IONP with magnetite like atomic arrangement and negative surface potential (n-IONP) was synthesized by co-precipitation method. Positively charged chitosan molecule coating was used to reverse the surface potential of n-IONP, i.e. positive surface potential IONP (p-IONP). The comparative data from fourier transform infrared spectroscope, XRD, and zeta potential analyzer indicated the successful coating of IONP surface with chitosan molecule. Additionally, the nanocrystals obtained were found to have spherical size with 10-20 nm diameter. The BacLight fluorescence assay, bacterial growth kinetic and colony forming unit studies indicated that n-IONP (<50 μM) has insignificant antimicrobial activity against Bacillus subtilis and Escherichia coli. However, coating with chitosan molecule resulted significant increase in antimicrobial propensity of IONP. Additionally, the assay to study reactive oxygen species (ROS) indicated relatively higher ROS production upon p-IONP treatment of the bacteria. The data, altogether, indicated that the chitosan coating of IONP result in interface that enhances ROS production, hence the antimicrobial activity.

525 citations

Journal ArticleDOI
TL;DR: Citation Soleymaninejadian E, Pramanik K, Samadian E. Immunomodulatory properties of mesenchymal stem cells: cytokines and factors.
Abstract: Mesenchymal stem cells (MSCs) are defined as undifferentiated cells that are capable of self renewal and differentiation into several cell types such as chondrocyte, adipocyte, osteocyte, myocyte, hepatocyte, and neuron-like cells. MSC can be isolated from bone marrow, umbilical cord blood, adipose tissue, placenta, periosteum, trabecular bone, synovium, skeletal muscle, and deciduous teeth. Immunomodulatory of MSCs is one of the important issues nowadays, because this aspect can be clinically applied for graft-versus-host and autoimmune diseases. In this review, we tried to discuss in detail about cytokines and factors such as members of the transforming growth factor superfamily (transforming growth factor-β), hepatic growth factors (HGF), prostaglandin E2 (PGE2), IL-10, indolamine 2,3-dioxygenase (IDO), nitric oxide (NO), heme oxygenase-1 (HO-1), and human leukocyte antigen-G (HLA-G) that are involved in immunomodulatory of MSCs.

210 citations

Journal ArticleDOI
TL;DR: The current review provides a good insight on mucocoadhesive polymers, the phenomenon of mucoadhesion and the factors which have the ability to affect the muco adhesion properties of a polymer.
Abstract: Bioadhesion can be defined as the process by which a natural or a synthetic polymer can adhere to a biological substrate. When the biological substrate is a mucosal layer then the phenomena is known as mucoadhesion. The substrate possessing bioadhesive property can help in devising a delivery system capable of delivering a bioactive agent for a prolonged period of time at a specific delivery site. The current review provides a good insight on mucoadhesive polymers, the phenomenon of mucoadhesion and the factors which have the ability to affect the mucoadhesive properties of a polymer.

198 citations

Journal ArticleDOI
TL;DR: Cytotoxicity data, nuclear condensation-fragmentation and apoptosis analysis together confirmed the therapeutic potential of the CA-CMC formulations and they can be used for colon-specific drug delivery.

162 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: An updated summary of recent advances in the field of nanomedicines and nano based drug delivery systems through comprehensive scrutiny of the discovery and application of nanomaterials in improving both the efficacy of novel and old drugs and selective diagnosis through disease marker molecules is presented.
Abstract: Nanomedicine and nano delivery systems are a relatively new but rapidly developing science where materials in the nanoscale range are employed to serve as means of diagnostic tools or to deliver therapeutic agents to specific targeted sites in a controlled manner Nanotechnology offers multiple benefits in treating chronic human diseases by site-specific, and target-oriented delivery of precise medicines Recently, there are a number of outstanding applications of the nanomedicine (chemotherapeutic agents, biological agents, immunotherapeutic agents etc) in the treatment of various diseases The current review, presents an updated summary of recent advances in the field of nanomedicines and nano based drug delivery systems through comprehensive scrutiny of the discovery and application of nanomaterials in improving both the efficacy of novel and old drugs (eg, natural products) and selective diagnosis through disease marker molecules The opportunities and challenges of nanomedicines in drug delivery from synthetic/natural sources to their clinical applications are also discussed In addition, we have included information regarding the trends and perspectives in nanomedicine area

3,112 citations

Journal ArticleDOI
TL;DR: In this article, a review of the production, characterization and current statuses of vegetable oil and biodiesel as well as the experimental research work carried out in various countries is presented.

2,891 citations

Journal ArticleDOI
TL;DR: Cancer-associated fibroblasts (CAFs) become synthetic machines that produce many different tumour components and have a role in creating extracellular matrix structure and metabolic and immune reprogramming of the tumour microenvironment with an impact on adaptive resistance to chemotherapy.
Abstract: Cancer is associated with fibroblasts at all stages of disease progression. This Review discusses the pleiotropic actions of cancer-associated fibroblasts (CAFs) on tumour cells and postulates that they are likely to be a heterogeneous and plastic population of cells in the tumour microenvironment. Among all cells, fibroblasts could be considered the cockroaches of the human body. They survive severe stress that is usually lethal to all other cells, and they are the only normal cell type that can be live-cultured from post-mortem and decaying tissue. Their resilient adaptation may reside in their intrinsic survival programmes and cellular plasticity. Cancer is associated with fibroblasts at all stages of disease progression, including metastasis, and they are a considerable component of the general host response to tissue damage caused by cancer cells. Cancer-associated fibroblasts (CAFs) become synthetic machines that produce many different tumour components. CAFs have a role in creating extracellular matrix (ECM) structure and metabolic and immune reprogramming of the tumour microenvironment with an impact on adaptive resistance to chemotherapy. The pleiotropic actions of CAFs on tumour cells are probably reflective of them being a heterogeneous and plastic population with context-dependent influence on cancer.

2,597 citations

Journal ArticleDOI
TL;DR: This work aims to provide a comprehensive overview of electrospun nanofibers, including the principle, methods, materials, and applications, and highlights the most relevant and recent advances related to the applications by focusing on the most representative examples.
Abstract: Electrospinning is a versatile and viable technique for generating ultrathin fibers. Remarkable progress has been made with regard to the development of electrospinning methods and engineering of electrospun nanofibers to suit or enable various applications. We aim to provide a comprehensive overview of electrospinning, including the principle, methods, materials, and applications. We begin with a brief introduction to the early history of electrospinning, followed by discussion of its principle and typical apparatus. We then discuss its renaissance over the past two decades as a powerful technology for the production of nanofibers with diversified compositions, structures, and properties. Afterward, we discuss the applications of electrospun nanofibers, including their use as "smart" mats, filtration membranes, catalytic supports, energy harvesting/conversion/storage components, and photonic and electronic devices, as well as biomedical scaffolds. We highlight the most relevant and recent advances related to the applications of electrospun nanofibers by focusing on the most representative examples. We also offer perspectives on the challenges, opportunities, and new directions for future development. At the end, we discuss approaches to the scale-up production of electrospun nanofibers and briefly discuss various types of commercial products based on electrospun nanofibers that have found widespread use in our everyday life.

2,289 citations