scispace - formally typeset
Search or ask a question
Author

Kristen A. Murphy

Bio: Kristen A. Murphy is an academic researcher from Duke University. The author has contributed to research in topics: Proinflammatory cytokine & Interferon. The author has co-authored 3 publications.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the role of the RNA demethylase fat mass and obesity-associated protein (FTO) in the type I IFN response was determined, and it was shown that depletion of FTO led to activation of the transcription factor STAT3, which increased the expression of a subset of ISGs.

6 citations

Posted ContentDOI
24 Jul 2021-bioRxiv
TL;DR: In this paper, the role of RNA demethylase FTO in the type I interferon response is determined, and it is shown that depletion of FTO led to activation of STAT3, a transcription factor that mediates responses to various cytokines, but whose role in the IFN response is not well understood.
Abstract: Signaling initiated by type I interferon (IFN) results in the induction of hundreds of IFN-stimulated genes (ISGs). The type I IFN response is important for antiviral restriction, but aberrant activation of this response can lead to inflammation and autoimmunity. Regulation of this response is incompletely understood. We previously reported that the mRNA modification m6A and its deposition enzymes, METTL3 and METTL14 (METTL3/14), promote the type I IFN response by directly modifying the mRNA of a subset of ISGs to enhance their translation. Here, we determined the role of the RNA demethylase FTO in the type I IFN response. FTO, which can remove either m6A or the cap-adjacent m6Am RNA modifications, has previously been associated with obesity and body mass index, type 2 diabetes, cardiovascular disease, and inflammation. We found that FTO suppresses the transcription of a distinct set of ISGs, including many known pro-inflammatory genes, and that this regulation is not through the actions of FTO on m6Am. Further, we found that depletion of FTO led to activation of STAT3, a transcription factor that mediates responses to various cytokines, but whose role in the type I IFN response is not well understood. This activation of STAT3 increased the expression of a subset of ISGs. Importantly, this increased ISG induction resulting from FTO depletion was partially ablated by depletion of STAT3. Together, these results reveal that FTO negatively regulates STAT3-mediated signaling that induces proinflammatory ISGs during the IFN response, highlighting an important role for FTO in suppression of inflammatory genes.

1 citations

Posted ContentDOI
28 Oct 2021-bioRxiv
TL;DR: In this article, the authors show that UFL1, as well as the process of ufmylation, promote IFN induction in response to RIG-I activation.
Abstract: The RNA binding protein RIG-I is a key initiator of the antiviral innate immune response. The signaling that mediates the antiviral response downstream of RIG-I is transduced through the adaptor protein MAVS and results in the induction of type I and III interferons (IFN). This signal transduction occurs at endoplasmic reticulum (ER)-mitochondrial contact sites, to which RIG-I and other signaling proteins are recruited following their activation. RIG-I signaling is highly regulated to prevent aberrant activation of this pathway and dysregulated induction of IFN. Previously, we identified UFL1, the E3 ligase of the ubiquitin-like modifier conjugation system called ufmylation, UFL1, as one of the proteins recruited to membranes at ER-mitochondrial contact sites in response to RIG-I activation. Here, we show that UFL1, as well as the process of ufmylation, promote IFN induction in response to RIG-I activation. We find that following RNA virus infection, UFL1 is recruited to the membrane targeting protein 14-3-3e, and that this complex is then recruited to activated RIG-I to promote downstream innate immune signaling. Importantly, loss of ufmylation prevents 14-3-3e interaction with RIG-I, which abrogates the interaction of RIG-I with MAVS and thus downstream signal transduction that induces IFN. Our results define ufmylation as an integral regulatory component of the RIG-I signaling pathway and as a post-translational control for IFN induction.

Cited by
More filters
Journal ArticleDOI
TL;DR: In-vitro and in-vivo data suggest that the inhibition of hypothalamic FTO could activate STAT3 through ERK1/2, which is potentially associated with reductions in food intake and body weight.
Abstract: Introduction: Fat mass and obesity-associated (FTO) gene is strongly associated with obesity which brings a major health threat. Altered expression of its encoded protein FTO in the hypothalamus has been identified to contribute to central control of appetite and body weight. However, its molecular mechanisms remain elusive. Methods: Mouse hypothalamic POMC cell line N43/5 was treated with FTO inhibitor rhein, FTO shRNA, or extracellular signal-regulated kinase 1/2 (ERK1/2) inhibitor U0126 to inhibit FTO or ERK1/2. Rhein and U0126 were injected into lateral ventricle of the mice by intracerebroventricular cannulation. Western blotting and immunofluorescent assays were performed to monitor protein level. Results: This study identified that inhibition of FTO in N43/5 cells led to phosphorylation of signal transducer and activator of transcription 3 (STAT3) at S727 site and induced p-STAT3-S727 nuclear translocation. We further showed that FTO inhibition promoted phosphorylation of ERK1/2; specific inhibition of ERK1/2 signaling by U0126 could abolish the effect of FTO inhibition on STAT3-S727 phosphorylation and nuclear translocation. Furthermore, we found that inhibition of hypothalamic FTO promoted STAT3-S727 phosphorylation in the hypothalamic arcuate nucleus, and the mice showed reductions in food intake and body weight. In addition, inhibition of hypothalamic ERK1/2 could abolish the effects of FTO inhibition on STAT3-S727 phosphorylation, reductions of food intake and body weight. Conclusion: Our in vitro and in vivo data suggest that the inhibition of hypothalamic FTO could activate STAT3 through ERK1/2, which is potentially associated with reductions in food intake and body weight.

1 citations

Journal ArticleDOI
Biao Li, Mingyuan Du, Qiao Sun, Zhengguo Cao, Hong He 
TL;DR: A TNF-α-induced decrease in the expression of Fto might play a critical role in the inflammatory response in cementoblasts, and knockdown of F to might upregulate theinflammatory response.
Abstract: OBJECTIVE Apical periodontitis is the most frequently occurring pathological lesion. Fat mass and obesity-associated protein (Fto) is the first identified RNA N6-methyladenosine demethylase. However, whether Fto regulates apical periodontitis remains unclear. This study aimed to explore the mechanisms of Fto in the tumor necrosis factor-α (TNF-α)-induced inflammatory response. MATERIALS AND METHODS We established an apical periodontitis model. An immortalized cementoblast cell line (OCCM-30) cells were exposed to TNF-α. Fto, Il6, Mcp1, and Mmp9 expressions were assessed by qRT-PCR. We knocked down Fto using lentiviruses and detected TNF-α-induced inflammation-related gene expressions and mRNA stability. RESULTS Mice with apical periodontitis showed downregulation of Fto expression. OCCM-30 cells exposed to TNF-α showed an upregulation of inflammation-related genes with a decrease in Fto. Furthermore, knockdown of Fto promoted the expressions of Il6, Mcp1, and Mmp9 in TNF-α-treated OCCM-30 cells as compared with negative control cells, whereas it did not affect the mRNA stability. Interestingly, Fto knockdown activated the p65, p38, and ERK1/2 pathways, and it slightly activated the JNK signaling pathway after TNF-α administration in OCCM-30 cells. CONCLUSION A TNF-α-induced decrease in the expression of Fto might play a critical role in the inflammatory response in cementoblasts, and knockdown of Fto might upregulate the inflammatory response.

1 citations

Journal ArticleDOI
TL;DR: In this paper , the authors investigated the role of m6A in patients with primary Sjögren's syndrome (pSS) using binary logistic regression analysis and found that m6a elements were risk factors for pSS.
Abstract: Objective The pathogenesis of primary Sjögren’s syndrome (pSS) remains incompletely understood. The N6-methyladenosine (m6A) RNA modification, the most abundant internal transcript modification, has close associations with multiple diseases. This study aimed to investigate the role of m6A in patients with pSS. Materials and methods This study enrolled 44 patients with pSS, 50 age- and gender-matched healthy controls (HCs), and 11 age- and gender-matched patients with non-SS sicca. We detected the messenger RNA (mRNA) levels of m6A elements (including METTL3, WTAP, RBM15, ALKBH5, FTO, YTHDF1, YTHDF2, YTHDF3, YTHDC1, and YTHDC2), ISG15, and USP18 in peripheral blood mononuclear cells (PBMCs) from patients with pSS, patients with non-SS sicca, and HCs. The clinical characteristics and laboratory findings of patients with pSS and patients with non-SS sicca were also collected. We used binary logistic regression to determine if m6A elements were risk factors for pSS. Results The mRNA levels of m6A writers (METTL3 and RBM15), erasers (ALKBH5 and FTO), and readers (YTHDF1, YTHDF2, YTHDF3, YTHDC1, and YTHDC2) were all significantly higher in PBMCs from patients with pSS than in HCs. The mRNA levels of m6A writers (METTL3 and WTAP) and readers (YTHDF2, YTHDF3, and YTHDC2) were lower in PBMCs from patients with pSS compared to patients with non-SS sicca. The expression of METTL3, RBM15, FTO, YTHDF1, YTHDF2, YTHDC1, and YTHDC2 was positively correlated with the level of C-reactive protein (CRP) of patients with pSS. The mRNA level of YTHDF1 in PBMCs from patients with pSS was negatively correlated with the EULAR Sjögren’s syndrome disease activity index (ESSDAI) score. In patients with pSS, FTO, YTHDC1, and YTHDC2 were also related to white blood cells (WBCs), neutrophils, lymphocytes, and monocytes. Increased mRNA level of ALKBH5 in PBMCs was a risk factor for pSS, as determined by binary logistic regression analysis. The mRNA level of ISG15 was positively correlated with that of FTO, YTHDF2, YTHDF3, and YTHDC2 in patients with pSS. Conclusion Compared with HCs, the expression of METTL3, RBM15, ALKBH5, FTO, YTHDF1, YTHDF2, YTHDF3, YTHDC1, and YTHDC2 was considerably higher in PBMCs from patients with pSS. In comparison with patients with non-SS sicca, the expression of METTL3, WTAP, YTHDF2, YTHDF3, and YTHDC2 was reduced in PBMCs from patients with pSS. The m6A elements correlating with clinical variables may indicate the disease activity and inflammation status of pSS. Elevated expression of ALKBH5 was a risk factor for pSS. The dynamic process of m6A modification is active in pSS. m6A elements (FTO, YTHDF2, YTHDF3, or YTHDC2) might target ISG15, stimulate the expression of ISG15, and activate the type I IFN signaling pathway, playing an active role in initiating the autoimmunity in pSS.

1 citations

Journal ArticleDOI
Jing Ni, Li-Juan Qiu, K J Yin, G M Chen, Han Pan 
TL;DR: In this paper , a large-scale genome-wide association study (GWAS) summary statistics of T2D and COVID-19 severity, linkage disequilibrium score regression and Mendelian randomization (MR) analyses were utilized to quantify the genetic correlations and causal relationships between the two traits.
Abstract: Patients with type 2 diabetes (T2D) have demonstrated a higher risk for developing more severe cases of COVID-19, but the complex genetic mechanism between them is still unknown. The aim of the present study was to untangle this relationship using genetically based approaches.By leveraging large-scale genome-wide association study (GWAS) summary statistics of T2D and COVID-19 severity, linkage disequilibrium score regression and Mendelian randomization (MR) analyses were utilized to quantify the genetic correlations and causal relationships between the two traits. Gene-based association and enrichment analysis were further applied to identify putative functional pathways shared between T2D and COVID-19 severity.Significant, moderate genetic correlations were detected between T2D and COVID-19 hospitalization (rg = 0.156, SE = 0.057, p = 0.005) or severe disease (rg = 0.155, SE = 0.057, p = 0.006). MR analysis did not support evidence for a causal effect of T2D on COVID-19 hospitalization (OR 1.030, 95% CI 0.979, 1.084, p = 0.259) or severe disease (OR 0.999, 95% CI 0.934, 1.069, p = 0.982). Genes having pgene < 0.05 for both T2D and COVID-19 severe were significantly enriched for biological pathways, such as response to type I interferon, glutathione derivative metabolic process and glutathione derivative biosynthetic process.Our findings further confirm the comorbidity of T2D and COVID-19 severity, but a non-causal impact of T2D on severe COVID-19. Shared genetically modulated molecular mechanisms underlying the co-occurrence of the two disorders are crucial for identifying therapeutic targets.

1 citations

Journal ArticleDOI
TL;DR: In this article , the authors used MeRIP-seq (methylation RNA immunoprecipitation sequencing), RNAseq (RNA sequencing), cell transfection, and other techniques to find the m6 A methylation modification map of control and EV71-infected groups of RD cells and further tested in an animal model of EV71 infection in vitro, with results consistent with in vitro.
Abstract: Some children infected with hand, foot, and mouth disease (HFMD) caused by enterovirus 71 (EV71) progressed to severe disease with various neurological complications in the short term, with a poor prognosis and high mortality. Studies had revealed that RNA N6 -methyladenosine (m6 A) modification had a significant impact on EV71 replication, but it was unknown how m6 A modification regulated the host cell's innate immune response brought on by EV71 infection. We used MeRIP-seq (methylation RNA immunoprecipitation sequencing), RNA-seq (RNA sequencing), cell transfection, and other techniques. MeRIP-seq and RNA-seq results showed the m6 A methylation modification map of control and EV71-infected groups of RD cells. And multilevel validation indicated that decreased expression of demethylase FTO (fat mass and obesity-associated protein) was responsible for the elevated total m6 A modification levels in EV71-infected RD cells and that thioredoxin interacting protein (TXNIP) may be a target gene for demethylase FTO action. Further functional experiments showed that demethylase knockdown of FTO promoted TXNIP expression, activation of NLRP3 inflammasome and promoted the release of proinflammatory factors in vitro, and the opposite result occurred with demethylase FTO overexpression. And further tested in an animal model of EV71 infection in vitro, with results consistent with in vitro. Our findings elucidated that depletion of the demethylase FTO during EV71 infection increased the m6 A modification level of TXNIP mRNA 3' untranslated region (UTR), enhancing mRNA stability, and promoting TXNIP expression. Consequently, the NLRP3 inflammasome was stimulated, leading to the release of proinflammatory factors and facilitating HFMD progression.