scispace - formally typeset
Search or ask a question
Author

Kristen L. Pierce

Bio: Kristen L. Pierce is an academic researcher from Howard Hughes Medical Institute. The author has contributed to research in topics: Receptor & MAPK/ERK pathway. The author has an hindex of 26, co-authored 46 publications receiving 7425 citations. Previous affiliations of Kristen L. Pierce include University of Arizona & Durham University.

Papers
More filters
Journal ArticleDOI
TL;DR: This paper showed that the classical models of G-protein coupling and activation of second-messenger-generating enzymes do not fully explain seven-transmembrane receptors' remarkably diverse biological actions.
Abstract: Seven-transmembrane receptors, which constitute the largest, most ubiquitous and most versatile family of membrane receptors, are also the most common target of therapeutic drugs. Recent findings indicate that the classical models of G-protein coupling and activation of second-messenger-generating enzymes do not fully explain their remarkably diverse biological actions.

2,300 citations

Journal ArticleDOI
TL;DR: The data suggest that β-arrestins function both as scaffolds to enhance cRaf-1 and MEK-dependent activation of ERK2, and as targeting proteins that direct activated ERK to specific subcellular locations.
Abstract: Using both confocal immunofluorescence microscopy and biochemical approaches, we have examined the role of β-arrestins in the activation and targeting of extracellular signal-regulated kinase 2 (ERK2) following stimulation of angiotensin II type 1a receptors (AT1aR). In HEK-293 cells expressing hemagglutinin-tagged AT1aR, angiotensin stimulation triggered β-arrestin-2 binding to the receptor and internalization of AT1aR-β-arrestin complexes. Using red fluorescent protein-tagged ERK2 to track the subcellular distribution of ERK2, we found that angiotensin treatment caused the redistribution of activated ERK2 into endosomal vesicles that also contained AT1aR-β-arrestin complexes. This targeting of ERK2 reflects the formation of multiprotein complexes containing AT1aR, β-arrestin-2, and the component kinases of the ERK cascade, cRaf-1, MEK1, and ERK2. Myc-tagged cRaf-1, MEK1, and green fluorescent protein-tagged ERK2 coprecipitated with Flag-tagged β-arrestin-2 from transfected COS-7 cells. Coprecipitation of cRaf-1 with β-arrestin-2 was independent of MEK1 and ERK2, whereas the coprecipitation of MEK1 and ERK2 with β-arrestin-2 was significantly enhanced in the presence of overexpressed cRaf-1, suggesting that binding of cRaf-1 to β-arrestin facilitates the assembly of a cRaf-1, MEK1, ERK2 complex. The phosphorylation of ERK2 in β-arrestin complexes was markedly enhanced by coexpression of cRaf-1, and this effect is blocked by expression of a catalytically inactive dominant inhibitory mutant of MEK1. Stimulation with angiotensin increased the binding of both cRaf-1 and ERK2 to β-arrestin-2, and the association of β-arrestin-2, cRaf-1, and ERK2 with AT1aR. These data suggest that β-arrestins function both as scaffolds to enhance cRaf-1 and MEK-dependent activation of ERK2, and as targeting proteins that direct activated ERK to specific subcellular locations.

838 citations

Journal ArticleDOI
TL;DR: The signalling roles of arrestins have been expanded even further with the discovery that the formation of stable receptor–arrestin complexes initiates photoreceptor apoptosis in Drosophila, leading to retinal degeneration.
Abstract: In the classical model of G-protein-coupled receptor (GPCR) regulation, arrestins terminate receptor signalling. After receptor activation, arrestins desensitize phosphorylated GPCRs, blocking further activation and initiating receptor internalization. This function of arrestins is exemplified by studies on the role of arrestins in the development of tolerance to, but not dependence on, morphine. Arrestins also link GPCRs to several signalling pathways, including activation of the non-receptor tyrosine kinase SRC and mitogen-activated protein kinase. In these cascades, arrestins function as adaptors and scaffolds, bringing sequentially acting kinases into proximity with each other and the receptor. The signalling roles of arrestins have been expanded even further with the discovery that the formation of stable receptor-arrestin complexes initiates photoreceptor apoptosis in Drosophila, leading to retinal degeneration. Here we review our current understanding of arrestin function, discussing both its classical and newly discovered roles.

472 citations

Journal ArticleDOI
26 Mar 2001-Oncogene
TL;DR: The discovery that β-arrestin, a protein well known for its roles in both receptor desensitization and internalization, serves as a scaffolding protein for at least two GPCR stimulated MAPK cascades, the extracellular signal regulated kinase (ERK) cascade and the c-jun N-terminal kinase 3 (JNK3) cascade may permit GPCRs in specific situations to control the temporal and spatial activity of MAPKs.
Abstract: Activation of classical second messenger cascades cannot fully explain the recently appreciated roles of heptahelical, or G-protein coupled receptors (GPCRs), in stimulation of mitogen activated protein kinase (MAPK) cascades. Rather, several distinct signaling mechanisms appear to contribute to GPCR-mediated MAPK activation. These include transactivation of the Epidermal Growth Factor Receptor (EGFR) via the autocrine/paracrine release of EGF-like ligands at the cell surface and scaffolding of MAPK cascades. A significant advance in the understanding of how GPCRs activate MAPK cascades is the discovery that β-arrestin, a protein well known for its roles in both receptor desensitization and internalization, serves as a scaffolding protein for at least two GPCR stimulated MAPK cascades, the extracellular signal regulated kinase (ERK) cascade and the c-jun N-terminal kinase 3 (JNK3) cascade. Together, these novel mechanisms of GPCR-mediated MAPK regulation may permit GPCRs in specific situations to control the temporal and spatial activity of MAPKs and thereby determine the consequences of GPCR stimulation with respect to transcriptional activation, cell proliferation and apoptosis.

407 citations

Journal ArticleDOI
TL;DR: GPCR activation mimics growth factor-mediated stimulation of the epidermal growth factor receptor (EGFR) with respect to many facets of RTK function, and RTK transactivation is revealed to be a process involving both association of receptors of distinct classes and the interaction of the transactivated RTK with the cells endocytic machinery.

406 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The development of brown adipose tissue with its characteristic protein, uncoupling protein-1 (UCP1), was probably determinative for the evolutionary success of mammals, as its thermogenesis enhances neonatal survival and allows for active life even in cold surroundings.
Abstract: Cannon, Barbara, and Jan Nedergaard. Brown Adipose Tissue: Function and Physiological Significance. Physiol Rev 84: 277–359, 2004; 10.1152/physrev.00015.2003.—The function of brown adipose tissue i...

5,470 citations

Journal ArticleDOI
23 Nov 2007-Science
TL;DR: Although the location of carazolol in the β2-adrenergic receptor is very similar to that of retinal in rhodopsin, structural differences in the ligand-binding site and other regions highlight the challenges in using rhodopin as a template model for this large receptor family.
Abstract: Heterotrimeric guanine nucleotide–binding protein (G protein)–coupled receptors constitute the largest family of eukaryotic signal transduction proteins that communicate across the membrane. We report the crystal structure of a human β2-adrenergic receptor–T4 lysozyme fusion protein bound to the partial inverse agonist carazolol at 2.4 angstrom resolution. The structure provides a high-resolution view of a human G protein–coupled receptor bound to a diffusible ligand. Ligand-binding site accessibility is enabled by the second extracellular loop, which is held out of the binding cavity by a pair of closely spaced disulfide bridges and a short helical segment within the loop. Cholesterol, a necessary component for crystallization, mediates an intriguing parallel association of receptor molecules in the crystal lattice. Although the location of carazolol in the β2-adrenergic receptor is very similar to that of retinal in rhodopsin, structural differences in the ligand-binding site and other regions highlight the challenges in using rhodopsin as a template model for this large receptor family.

3,065 citations

Journal ArticleDOI
TL;DR: ins biology has potential clinical relevance for atherosclerosis, the response to vascular injury and aortic aneurysm, and the roles of individual mediators and their receptors in modulating the inflammatory response.
Abstract: Prostaglandins are lipid autacoids derived from arachidonic acid. They both sustain homeostatic functions and mediate pathogenic mechanisms, including the inflammatory response. They are generated from arachidonate by the action of cyclooxygenase isoenzymes, and their biosynthesis is blocked by nonsteroidal antiinflammatory drugs, including those selective for inhibition of cyclooxygenase-2. Despite the clinical efficacy of nonsteroidal antiinflammatory drugs, prostaglandins may function in both the promotion and resolution of inflammation. This review summarizes insights into the mechanisms of prostaglandin generation and the roles of individual mediators and their receptors in modulating the inflammatory response. Prostaglandin biology has potential clinical relevance for atherosclerosis, the response to vascular injury and aortic aneurysm.

2,713 citations

Journal ArticleDOI
TL;DR: An overview of the current status of research on the prostanoid receptors is given and domains and amino acid residues conferring the specificities of ligand binding and signal transduction are being clarified.
Abstract: Prostanoids are the cyclooxygenase metabolites of arachidonic acid and include prostaglandin (PG) D2, PGE2, PGF2α, PGI2, and thromboxne A2. They are synthesized and released upon cell stimulation and act on cells in the vicinity of their synthesis to exert their actions. Receptors mediating the actions of prostanoids were recently identified and cloned. They are G protein-coupled receptors with seven transmembrane domains. There are eight types and subtypes of prostanoid receptors that are encoded by different genes but as a whole constitute a subfamily in the superfamily of the rhodopsin-type receptors. Each of the receptors was expressed in cultured cells, and its ligand-binding properties and signal transduction pathways were characterized. Moreover, domains and amino acid residues conferring the specificities of ligand binding and signal transduction are being clarified. Information also is accumulating as to the distribution of these receptors in the body. It is also becoming clear for some types of ...

2,371 citations

Journal ArticleDOI
TL;DR: This paper showed that the classical models of G-protein coupling and activation of second-messenger-generating enzymes do not fully explain seven-transmembrane receptors' remarkably diverse biological actions.
Abstract: Seven-transmembrane receptors, which constitute the largest, most ubiquitous and most versatile family of membrane receptors, are also the most common target of therapeutic drugs. Recent findings indicate that the classical models of G-protein coupling and activation of second-messenger-generating enzymes do not fully explain their remarkably diverse biological actions.

2,300 citations