scispace - formally typeset
Search or ask a question
Author

Kristen M. Kennedy

Bio: Kristen M. Kennedy is an academic researcher from University of Texas at Dallas. The author has contributed to research in topics: Cognition & White matter. The author has an hindex of 39, co-authored 103 publications receiving 8544 citations. Previous affiliations of Kristen M. Kennedy include Missouri State University & Wayne State University.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors present longitudinal measures of five-year change in the regional brain volumes in healthy adults and assess the average and individual differences in volume changes and the effects of age, sex and hypertension with latent difference score modeling.
Abstract: Brain aging research relies mostly on cross-sectional studies, which infer true changes from age differences. We present longitudinal measures of five-year change in the regional brain volumes in healthy adults. Average and individual differences in volume changes and the effects of age, sex and hypertension were assessed with latent difference score modeling. The caudate, the cerebellum, the hippocampus and the association cortices shrunk substantially. There was minimal change in the entorhinal and none in the primary visual cortex. Longitudinal measures of shrinkage exceeded cross-sectional estimates. All regions except the inferior parietal lobule showed individual differences in change. Shrinkage of the cerebellum decreased from young to middle adulthood, and increased from middle adulthood to old age. Shrinkage of the hippocampus, the entorhinal cortices, the inferior temporal cortex and the prefrontal white matter increased with age. Moreover, shrinkage in the hippocampus and the cerebellum accelerated with age. In the hippocampus, both linear and quadratic trends in incremental age-related shrinkage were limited to the hypertensive participants. Individual differences in shrinkage correlated across some regions, suggesting common causes. No sex differences in age trends except for the caudate were observed. We found no evidence of neuroprotective effects of larger brain size or educational attainment.

2,635 citations

Journal ArticleDOI
TL;DR: Significant individual differences in shrinkage rates were observed in the lateral prefrontal cortex, the cerebellum, and all the white matter regions throughout the study, whereas additional regions showed significant individual variation in change during the second follow-up.

515 citations

Journal ArticleDOI
TL;DR: It was found that age and regional white matter integrity differentially influenced cognitive performance, and age-related degradation in anterior brain areas was associated with decreased processing speed and poorer working memory, whereas reduced inhibition and greater task switching costs were linked to decline in posterior areas.

436 citations

Journal ArticleDOI
TL;DR: Age-related shrinkage occurs in the medial temporal lobes of healthy adults, with significant hippocampal decline and minimal entorhinal changes in both regions, although the rate of decline accelerates with age.
Abstract: Objective: To test the hypothesis that entorhinal cortex (EC) volume decreases at a slower rate than the hippocampal (HC) volume in healthy adults, and to examine whether the rate of shrinkage increases with age. Methods: Volumes of the HC and EC were measured twice on MRI scans of 54 healthy adults (aged 26 to 82 years), with an average interval of 5 years. Results: Markedly different age trends were noted in the examined regions. The EC showed no age-related differences on both occasions and only minimal age-related change (0.33%/y). By contrast, the HC exhibited significant age-related differences at baseline and at follow-up evaluation and decreased at a faster pace of 0.86%/y. Older participants (aged ≥50 years) showed increased annual shrinkage of the HC (1.18%) and EC shrinkage (0.53%/y). The rate of HC volume loss significantly exceeded that of the EC. No EC shrinkage and modest HC volume reduction were observed in people aged Conclusions: Age-related shrinkage occurs in the medial temporal lobes of healthy adults, with significant hippocampal decline and minimal entorhinal changes. In both regions, the rate of decline accelerates with age, although the role of pathologic factors in age-related increase of volume loss merits further investigation.

416 citations

Journal ArticleDOI
TL;DR: Even in a highly selected lifespan sample of adults, A&bgr; deposition is apparent in some adults and is influenced by APOE status, suggesting that subtle cognitive changes accrue as amyloid progresses.
Abstract: Objective: Several lines of evidence suggest that pathologic changes underlying Alzheimer disease (AD) begin years prior to the clinical expression of the disease, underscoring the need for studies of cognitively healthy adults to capture these early changes. The overall goal of the current study was to map the cortical distribution of β-amyloid (Aβ) in a healthy adult lifespan sample (aged 30–89), and to assess the relationship between elevated amyloid and cognitive performance across multiple domains. Methods: A total of 137 well-screened and cognitively normal adults underwent Aβ PET imaging with radiotracer 18 F-florbetapir. Aβ load was estimated from 8 cortical regions. Participants were genotyped for A PO E and tested for processing speed, working memory, fluid reasoning, episodic memory, and verbal ability. Results: Aβ deposition is distributed differentially across the cortex and progresses at varying rates with age across cortical brain regions. A subset of cognitively normal adults aged 60 and over show markedly elevated deposition, and also had a higher rate of APOE e4 (38%) than nonelevated adults (19%). Aβ burden was linked to poorer cognitive performance on measures of processing speed, working memory, and reasoning. Conclusions: Even in a highly selected lifespan sample of adults, Aβ deposition is apparent in some adults and is influenced by APOE status. Greater amyloid burden was related to deleterious effects on cognition, suggesting that subtle cognitive changes accrue as amyloid progresses.

351 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This research framework seeks to create a common language with which investigators can generate and test hypotheses about the interactions among different pathologic processes (denoted by biomarkers) and cognitive symptoms and envision that defining AD as a biological construct will enable a more accurate characterization and understanding of the sequence of events that lead to cognitive impairment that is associated with AD.
Abstract: In 2011, the National Institute on Aging and Alzheimer's Association created separate diagnostic recommendations for the preclinical, mild cognitive impairment, and dementia stages of Alzheimer's disease. Scientific progress in the interim led to an initiative by the National Institute on Aging and Alzheimer's Association to update and unify the 2011 guidelines. This unifying update is labeled a "research framework" because its intended use is for observational and interventional research, not routine clinical care. In the National Institute on Aging and Alzheimer's Association Research Framework, Alzheimer's disease (AD) is defined by its underlying pathologic processes that can be documented by postmortem examination or in vivo by biomarkers. The diagnosis is not based on the clinical consequences of the disease (i.e., symptoms/signs) in this research framework, which shifts the definition of AD in living people from a syndromal to a biological construct. The research framework focuses on the diagnosis of AD with biomarkers in living persons. Biomarkers are grouped into those of β amyloid deposition, pathologic tau, and neurodegeneration [AT(N)]. This ATN classification system groups different biomarkers (imaging and biofluids) by the pathologic process each measures. The AT(N) system is flexible in that new biomarkers can be added to the three existing AT(N) groups, and new biomarker groups beyond AT(N) can be added when they become available. We focus on AD as a continuum, and cognitive staging may be accomplished using continuous measures. However, we also outline two different categorical cognitive schemes for staging the severity of cognitive impairment: a scheme using three traditional syndromal categories and a six-stage numeric scheme. It is important to stress that this framework seeks to create a common language with which investigators can generate and test hypotheses about the interactions among different pathologic processes (denoted by biomarkers) and cognitive symptoms. We appreciate the concern that this biomarker-based research framework has the potential to be misused. Therefore, we emphasize, first, it is premature and inappropriate to use this research framework in general medical practice. Second, this research framework should not be used to restrict alternative approaches to hypothesis testing that do not use biomarkers. There will be situations where biomarkers are not available or requiring them would be counterproductive to the specific research goals (discussed in more detail later in the document). Thus, biomarker-based research should not be considered a template for all research into age-related cognitive impairment and dementia; rather, it should be applied when it is fit for the purpose of the specific research goals of a study. Importantly, this framework should be examined in diverse populations. Although it is possible that β-amyloid plaques and neurofibrillary tau deposits are not causal in AD pathogenesis, it is these abnormal protein deposits that define AD as a unique neurodegenerative disease among different disorders that can lead to dementia. We envision that defining AD as a biological construct will enable a more accurate characterization and understanding of the sequence of events that lead to cognitive impairment that is associated with AD, as well as the multifactorial etiology of dementia. This approach also will enable a more precise approach to interventional trials where specific pathways can be targeted in the disease process and in the appropriate people.

5,126 citations

Journal ArticleDOI
TL;DR: It is shown that aerobic exercise training increases the size of the anterior hippocampus, leading to improvements in spatial memory, and that increased hippocampal volume is associated with greater serum levels of BDNF, a mediator of neurogenesis in the dentate gyrus.
Abstract: The hippocampus shrinks in late adulthood, leading to impaired memory and increased risk for dementia. Hippocampal and medial temporal lobe volumes are larger in higher-fit adults, and physical activity training increases hippocampal perfusion, but the extent to which aerobic exercise training can modify hippocampal volume in late adulthood remains unknown. Here we show, in a randomized controlled trial with 120 older adults, that aerobic exercise training increases the size of the anterior hippocampus, leading to improvements in spatial memory. Exercise training increased hippocampal volume by 2%, effectively reversing age-related loss in volume by 1 to 2 y. We also demonstrate that increased hippocampal volume is associated with greater serum levels of BDNF, a mediator of neurogenesis in the dentate gyrus. Hippocampal volume declined in the control group, but higher preintervention fitness partially attenuated the decline, suggesting that fitness protects against volume loss. Caudate nucleus and thalamus volumes were unaffected by the intervention. These theoretically important findings indicate that aerobic exercise training is effective at reversing hippocampal volume loss in late adulthood, which is accompanied by improved memory function.

3,616 citations

01 Jan 2010
TL;DR: In this paper, the authors describe a scenario where a group of people are attempting to find a solution to the problem of "finding the needle in a haystack" in the environment.
Abstract: 中枢神経系疾患の治療は正常細胞(ニューロン)の機能維持を目的とするが,脳血管障害のように機能障害の原因が細胞の死滅に基づくことは多い.一方,脳腫瘍の治療においては薬物療法や放射線療法といった腫瘍細胞の死滅を目標とするものが大きな位置を占める.いずれの場合にも,細胞死の機序を理解することは各種病態や治療法の理解のうえで重要である.現在のところ最も研究の進んでいる細胞死の型はアポトーシスである.そのなかで重要な位置を占めるミトコンドリアにおける反応および抗アポトーシス因子について概要を紹介する.

2,716 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present longitudinal measures of five-year change in the regional brain volumes in healthy adults and assess the average and individual differences in volume changes and the effects of age, sex and hypertension with latent difference score modeling.
Abstract: Brain aging research relies mostly on cross-sectional studies, which infer true changes from age differences. We present longitudinal measures of five-year change in the regional brain volumes in healthy adults. Average and individual differences in volume changes and the effects of age, sex and hypertension were assessed with latent difference score modeling. The caudate, the cerebellum, the hippocampus and the association cortices shrunk substantially. There was minimal change in the entorhinal and none in the primary visual cortex. Longitudinal measures of shrinkage exceeded cross-sectional estimates. All regions except the inferior parietal lobule showed individual differences in change. Shrinkage of the cerebellum decreased from young to middle adulthood, and increased from middle adulthood to old age. Shrinkage of the hippocampus, the entorhinal cortices, the inferior temporal cortex and the prefrontal white matter increased with age. Moreover, shrinkage in the hippocampus and the cerebellum accelerated with age. In the hippocampus, both linear and quadratic trends in incremental age-related shrinkage were limited to the hypertensive participants. Individual differences in shrinkage correlated across some regions, suggesting common causes. No sex differences in age trends except for the caudate were observed. We found no evidence of neuroprotective effects of larger brain size or educational attainment.

2,635 citations

Journal ArticleDOI
TL;DR: The scaffolding theory of aging and cognition (STAC) is proposed, suggesting that pervasive increased frontal activation with age is a marker of an adaptive brain that engages in compensatory scaffolding in response to the challenges posed by declining neural structures and function.
Abstract: There are declines with age in speed of processing, working memory, inhibitory function, and long-term memory, as well as decreases in brain structure size and white matter integrity. In the face of these decreases, functional imaging studies have demonstrated, somewhat surprisingly, reliable increases in prefrontal activation. To account for these joint phenomena, we propose the scaffolding theory of aging and cognition (STAC). STAC provides an integrative view of the aging mind, suggesting that pervasive increased frontal activation with age is a marker of an adaptive brain that engages in compensatory scaffolding in response to the challenges posed by declining neural structures and function. Scaffolding is a normal process present across the lifespan that involves use and development of complementary, alternative neural circuits to achieve a particular cognitive goal. Scaffolding is protective of cognitive function in the aging brain, and available evidence suggests that the ability to use this mechanism is strengthened by cognitive engagement, exercise, and low levels of default network engagement.

2,171 citations