scispace - formally typeset
Search or ask a question
Author

Kristian Berg

Bio: Kristian Berg is an academic researcher from Oslo University Hospital. The author has contributed to research in topics: Endocytic vesicle & Photosensitizer. The author has an hindex of 62, co-authored 294 publications receiving 20906 citations. Previous affiliations of Kristian Berg include University College Hospital & University of Oslo.


Papers
More filters
Journal ArticleDOI
TL;DR: The photodynamic therapy (PDT) is a clinically approved, minimally invasive therapeutic procedure that can exert a selective cytotoxic activity toward malignant cells as discussed by the authors, which can prolong survival in patients with inoperable cancers and significantly improve quality of life.
Abstract: Photodynamic therapy (PDT) is a clinically approved, minimally invasive therapeutic procedure that can exert a selective cytotoxic activity toward malignant cells. The procedure involves administration of a photosensitizing agent followed by irradiation at a wavelength corresponding to an absorbance band of the sensitizer. In the presence of oxygen, a series of events lead to direct tumor cell death, damage to the microvasculature, and induction of a local inflammatory reaction. Clinical studies revealed that PDT can be curative, particularly in early stage tumors. It can prolong survival in patients with inoperable cancers and significantly improve quality of life. Minimal normal tissue toxicity, negligible systemic effects, greatly reduced long-term morbidity, lack of intrinsic or acquired resistance mechanisms, and excellent cosmetic as well as organ function-sparing effects of this treatment make it a valuable therapeutic option for combination treatments. With a number of recent technological improvements, PDT has the potential to become integrated into the mainstream of cancer treatment. CA Cancer J Clin 2011;61:250-281. V C

3,770 citations

Journal ArticleDOI
15 Jun 1997-Cancer
TL;DR: Studies have shown that a higher accumulation of ALA‐derived PpIX in rapidly proliferating cells may provide a biologic rationale for clinical use of ALa‐based PDT and diagnosis, however, no review updating the clinical data has appeared so far.
Abstract: BACKGROUND Photodynamic therapy (PDT) for cancer patients has developed into an important new clinical treatment modality in the past 25 years PDT involves administration of a tumor-localizing photosensitizer or photosensitizer prodrug (5-aminolevulinic acid [ALA], a precursor in the heme biosynthetic pathway) and the subsequent activation of the photosensitizer by light Although several photosensitizers other than ALA-derived protoporphyrin IX (PpIX) have been used in clinical PDT, ALA-based PDT has been the most active area of clinical PDT research during the past 5 years Studies have shown that a higher accumulation of ALA-derived PpIX in rapidly proliferating cells may provide a biologic rationale for clinical use of ALA-based PDT and diagnosis However, no review updating the clinical data has appeared so far METHODS A review of recently published data on clinical ALA-based PDT and diagnosis was conducted RESULTS Several individual studies in which patients with primary nonmelanoma cutaneous tumors received topical ALA-based PDT have reported promising results, including outstanding cosmetic results However, the modality with present protocols does not, in general, appear to be superior to conventional therapies with respect to initial complete response rates and long term recurrence rates, particularly in the treatment of nodular skin tumors Topical ALA-PDT does have the following advantages over conventional treatments: it is noninvasive; it produces excellent cosmetic results; it is well tolerated by patients; it can be used to treat multiple superficial lesions in short treatment sessions; it can be applied to patients who refuse surgery or have pacemakers and bleeding tendency; it can be used to treat lesions in specific locations, such as the oral mucosa or the genital area; it can be used as a palliative treatment; and it can be applied repeatedly without cumulative toxicity Topical ALA-PDT also has potential as a treatment for nonneoplastic skin diseases Systemic administration of ALA does not seem to be severely toxic, but the advantage of using this approach for PDT of superficial lesions of internal hollow organs is still uncertain The ALA-derived porphyrin fluorescence technique would be useful in the diagnosis of superficial lesions of internal hollow organs CONCLUSIONS Promising results of ALA-based clinical PDT and diagnosis have been obtained The modality has advantages over conventional treatments However, some improvements need to be made, such as optimization of parameters of ALA-based PDT and diagnosis; increased tumor selectivity of ALA-derived PpIX; better understanding of light distribution in tissue; improvement of light dosimetry procedure; and development of simpler, cheaper, and more efficient light delivery systems Cancer 1997; 79:2282-308 © 1997 American Cancer Society

1,000 citations

Journal ArticleDOI
TL;DR: NHIK 3025 cells were incubated with Photofrin II and/or tetra (3‐hydroxyphenyl)porphyrin and exposed to light at either 400 or 420 nm and the kinetics of the photodegradation of the dyes were studied.
Abstract: NHIK 3025 cells were incubated with Photofrin II (PII) and/or tetra (3-hydroxyphenyl)porphyrin (3THPP) and exposed to light at either 400 or 420 nm, i.e. at the wavelengths of the maxima of the fluorescence excitation spectra of the two dyes. The kinetics of the photodegradation of the dyes were studied. When present separately in the cells the two dyes are photodegraded with a similar quantum yield. 3THPP is degraded 3-6 times more efficiently by light quanta absorbed by the fluorescent fraction of 3THPP than by light quanta absorbed by the fluorescent fraction of PII present in the same cells. The distance diffused by the reactive intermediate, supposedly mainly 1O2, causing the photodegradation was estimated to be on the order of 0.01-0.02 micron, which corresponds to a lifetime of 0.01-0.04 microsecond of the intermediate in the cells. PII has binding sites at proteins in the cells as shown by an energy transfer band in the fluorescence excitation spectrum at 290 nm. During light exposure this band decays faster than the Soret band of PII under the present conditions. Photoproducts (1O2 etc.) generated at one binding site contribute significantly in the destruction of remote binding sites.

973 citations

Journal ArticleDOI
TL;DR: Because PpIX is an efficient photosensitizer, ALA has been introduced as a drug for clinical photodynamic therapy (PDT) of cancer (8,9).
Abstract: The iron(I1) complex of protoporphyrin IX (PpIX)? (heme) is bound to different proteins to form key biomolecules (hemoproteins) such as hemoglobin, myoglobin, cytochromes, catalase, peroxidase and tryptophan pyrrolase. The lives of the cells and of the body as a whole is therefore crucially dependent upon the biosynthesis and metabolism of porphyrins. Almost all types of cells of the human body, with the exception of mature red blood cells, are equipped with a machinery to synthesize heme. In the first step of the heme biosynthetic pathway 5-aminolevulinic acid (ALA) is formed from glycine and succinyl CoA. The synthesis of ALA is regulated by the amount of heme in the cell. The last step in the formation of heme is the incorporation of iron into PpIX and takes place in the mitochondria under the action of the enzyme, ferrochelatase. By adding exogenous ALA, PpIX may accumulate because of the limited capacity of ferrochelatase. Porphobilinogen deaminase (PBGD) is another enzyme that is active in the heme synthesis pathway (catalyzing the formation of uroporphyrinogen from porphobilinogen [PBG]). The activity of this enzyme is higher in some tumors (1-3), while that of ferrochelatase is lower (2-7), so that PpIX accumulates with some degree of selectivity in tumors. Because PpIX is an efficient photosensitizer, ALA has been introduced as a drug for clinical photodynamic therapy (PDT) of cancer (8,9). Photodynamic therapy involves systemic administration of a tumor-localizing photosensitizer and its subsequent activation by light of an appropriate wavelength to create a pho-

628 citations


Cited by
More filters
Journal Article
TL;DR: For the next few weeks the course is going to be exploring a field that’s actually older than classical population genetics, although the approach it’ll be taking to it involves the use of population genetic machinery.
Abstract: So far in this course we have dealt entirely with the evolution of characters that are controlled by simple Mendelian inheritance at a single locus. There are notes on the course website about gametic disequilibrium and how allele frequencies change at two loci simultaneously, but we didn’t discuss them. In every example we’ve considered we’ve imagined that we could understand something about evolution by examining the evolution of a single gene. That’s the domain of classical population genetics. For the next few weeks we’re going to be exploring a field that’s actually older than classical population genetics, although the approach we’ll be taking to it involves the use of population genetic machinery. If you know a little about the history of evolutionary biology, you may know that after the rediscovery of Mendel’s work in 1900 there was a heated debate between the “biometricians” (e.g., Galton and Pearson) and the “Mendelians” (e.g., de Vries, Correns, Bateson, and Morgan). Biometricians asserted that the really important variation in evolution didn’t follow Mendelian rules. Height, weight, skin color, and similar traits seemed to

9,847 citations

Journal ArticleDOI
TL;DR: PDT is being tested in the clinic for use in oncology — to treat cancers of the head and neck, brain, lung, pancreas, intraperitoneal cavity, breast, prostate and skin.
Abstract: The therapeutic properties of light have been known for thousands of years, but it was only in the last century that photodynamic therapy (PDT) was developed. At present, PDT is being tested in the clinic for use in oncology--to treat cancers of the head and neck, brain, lung, pancreas, intraperitoneal cavity, breast, prostate and skin. How does PDT work, and how can it be used to treat cancer and other diseases?

5,041 citations

Book
01 May 1988
TL;DR: A comprehensive review of mechanisms of subcellular and tumor localization of photosensitizing agents, as well as of molecular, cellular, and tumor responses associated with photodynamic therapy, are discussed.
Abstract: Photodynamic therapy involves administration of a tumor-localizing photosensitizing agent, which may require metabolic synthesis (i.e., a prodrug), followed by activation of the agent by light of a specific wavelength. This therapy results in a sequence of photochemical and photobiologic processes that cause irreversible photodamage to tumor tissues. Results from preclinical and clinical studies conducted worldwide over a 25-year period have established photodynamic therapy as a useful treatment approach for some cancers. Since 1993, regulatory approval for photodynamic therapy involving use of a partially purified, commercially available hematoporphyrin derivative compound (Photofrin) in patients with early and advanced stage cancer of the lung, digestive tract, and genitourinary tract has been obtained in Canada, The Netherlands, France, Germany, Japan, and the United States. We have attempted to conduct and present a comprehensive review of this rapidly expanding field. Mechanisms of subcellular and tumor localization of photosensitizing agents, as well as of molecular, cellular, and tumor responses associated with photodynamic therapy, are discussed. Technical issues regarding light dosimetry are also considered.

4,580 citations

Journal ArticleDOI
TL;DR: The photodynamic therapy (PDT) is a clinically approved, minimally invasive therapeutic procedure that can exert a selective cytotoxic activity toward malignant cells as discussed by the authors, which can prolong survival in patients with inoperable cancers and significantly improve quality of life.
Abstract: Photodynamic therapy (PDT) is a clinically approved, minimally invasive therapeutic procedure that can exert a selective cytotoxic activity toward malignant cells. The procedure involves administration of a photosensitizing agent followed by irradiation at a wavelength corresponding to an absorbance band of the sensitizer. In the presence of oxygen, a series of events lead to direct tumor cell death, damage to the microvasculature, and induction of a local inflammatory reaction. Clinical studies revealed that PDT can be curative, particularly in early stage tumors. It can prolong survival in patients with inoperable cancers and significantly improve quality of life. Minimal normal tissue toxicity, negligible systemic effects, greatly reduced long-term morbidity, lack of intrinsic or acquired resistance mechanisms, and excellent cosmetic as well as organ function-sparing effects of this treatment make it a valuable therapeutic option for combination treatments. With a number of recent technological improvements, PDT has the potential to become integrated into the mainstream of cancer treatment. CA Cancer J Clin 2011;61:250-281. V C

3,770 citations

Journal ArticleDOI
04 Oct 1995-JAMA
TL;DR: Higher folic acid intake by reducing tHcy levels promises to prevent arteriosclerotic vascular disease and under different assumptions, 13,500 to 50,000 CAD deaths annually could be avoided.
Abstract: Objective. —To determine the risk of elevated total homocysteine (tHcy) levels for arteriosclerotic vascular disease, estimate the reduction of tHcy by folic acid, and calculate the potential reduction of coronary artery disease (CAD) mortality by increasing folic acid intake. Data Sources. —MEDLINE search for meta-analysis of 27 studies relating homocysteine to arteriosclerotic vascular disease and 11 studies of folic acid effects on tHcy levels. Study Selection and Data Extraction. —Studies dealing with CAD, cerebrovascular disease, and peripheral arterial vascular disease were selected. Three prospective and six population-based case-control studies were considered of high quality. Five cross-sectional and 13 other case-control studies were also included. Causality of tHcy's role in the pathogenesis of vascular disease was inferred because of consistency across studies by different investigators using different methods in different populations. Data Synthesis. —Elevations in tHcy were considered an independent graded risk factor for arteriosclerotic vascular diseases. The odds ratio (OR) for CAD of a 5-μmol/L tHcy increment is 1.6(95% confidence interval [Cl], 1.4 to 1.7) for men and 1.8 (95% Cl, 1.3 to 1.9) for women. A total of 10% of the population's CAD risk appears attributable to tHcy. The OR for cerebrovascular disease (5-μmol/L tHcy increment) is 1.5 (95% Cl, 1.3 to 1.9). Peripheral arterial disease also showed a strong association. Increased folic acid intake (approximately 200 μg/d) reduces tHcy levels by approximately 4 μmol/L. Assuming that lower tHcy levels decrease CAD mortality, we calculated the effect of (1) increased dietary folate, (2) supplementation by tablets, and (3) grain fortification. Under different assumptions, 13 500 to 50 000 CAD deaths annually could be avoided; fortification of food had the largest impact. Conclusions. —A 5-μmol/L tHcy increment elevates CAD risk by as much as cholesterol increases of 0.5 mmol/L (20 mg/dL). Higher folic acid intake by reducing tHcy levels promises to prevent arteriosclerotic vascular disease. Clinical trials are urgently needed. Concerns about masking cobalamin deficiency by folic acid could be lessened by adding 1 mg of cobalamin to folic acid supplements. ( JAMA . 1995;274:1049-1057)

3,722 citations