scispace - formally typeset
Search or ask a question
Author

Kristien Clement-Nyns

Bio: Kristien Clement-Nyns is an academic researcher from Katholieke Universiteit Leuven. The author has contributed to research in topics: Grid & Electricity. The author has an hindex of 7, co-authored 10 publications receiving 2816 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors proposed a coordinated charging strategy to minimize the power losses and to maximize the main grid load factor of the plug-in hybrid electric vehicles (PHEVs).
Abstract: Alternative vehicles, such as plug-in hybrid electric vehicles, are becoming more popular The batteries of these plug-in hybrid electric vehicles are to be charged at home from a standard outlet or on a corporate car park These extra electrical loads have an impact on the distribution grid which is analyzed in terms of power losses and voltage deviations Without coordination of the charging, the vehicles are charged instantaneously when they are plugged in or after a fixed start delay This uncoordinated power consumption on a local scale can lead to grid problems Therefore, coordinated charging is proposed to minimize the power losses and to maximize the main grid load factor The optimal charging profile of the plug-in hybrid electric vehicles is computed by minimizing the power losses As the exact forecasting of household loads is not possible, stochastic programming is introduced Two main techniques are analyzed: quadratic and dynamic programming

2,601 citations

Journal ArticleDOI
TL;DR: There could be a good combination with PHEVs as they can provide storage to take care of the excess of produced energy and use it for driving or release it into the grid at a later time, in that way, consumption and generation are more efficiently matched.

361 citations

01 Jan 2008
TL;DR: In this paper, the authors analyzed the voltage profile and power losses due to plug-in hybrid electric vehicle recharging in a residential network representing a selection of streets, and showed that this voltage profile can lead to grid problems.
Abstract: Alternative vehicles based on internal combustion engines (ICE), such as the hybrid electric vehicle (HEV), plug-in hybrid electric vehicle (PHEV) and the fuel-cell electric vehicle (FCEV), are becoming increasingly popular. HEVs are currently commercially available and PHEVs will be the next phase in the evolution of hybrid and electric vehicles. The batteries of the PHEVs are designed to be charged at home, from a wall socket in the garage, or on a corporate car park. These extra electrical loads have an impact on the distribution grid. First, the amount of electrical energy the distribution grid has to deliver for recharging the batteries of a PHEV fleet for the period 2003-2050 for Belgium is estimated. The TREMOVE model [1] provides the vehicle-kilometres and the number of passenger vehicles. For 2030, this electrical energy is at maximum 5.1% of the generated electricity in Belgium, assuming that all HEVs are PHEVs and depending on the scenarios of the PRIMES model [2]. This gives a first indication of the potential for PHEV. Secondly, this research aims to analyze the voltage profile and power losses due to PHEV recharging in a residential network representing a selection of streets. Uncontrolled power consumption on a local scale can lead to grid problems.

33 citations

Journal ArticleDOI
TL;DR: In this paper, the impact of a voltage controller embedded in a plug-in hybrid electric vehicle charger is regarded in terms of the amount of energy that is injected in the grid, depending on the price tariffs, charging and discharging efficiencies and the battery energy content.
Abstract: The charging of batteries of plug-in hybrid electric vehicles at home at standard outlets has an impact on the distribution grid which may require serious investments in grid expansion. The coordination of the charging gives an improvement of the grid exploitation in terms of reduced power losses and voltage deviations with respect to uncoordinated charging. The vehicles must be dispatchable to achieve the most efficient solution. As the exact forecasting of household loads is not possible, stochastic programming is introduced. Two main techniques are analyzed in this paper: quadratic and dynamic programming. Both techniques are compared in results and storage requirements. The charging can be coordinated directly or indirectly by the grid utility or an aggregator who will sell the aggregated demand of PHEVs at the utility. PHEVs can also discharge and so inject energy in the grid to restrict voltage drops. The amount of energy that is injected in the grid depends on the price tariffs, the charging and discharging efficiencies and the battery energy content. The impact of a voltage controller embedded in a PHEV charger is regarded in this paper. A day and night tariff are applied. The charging and discharging of vehicles can respond to real-time pricing or on a price-schedule as well. Voltage control is the first step in the utilization of distributed resources like PHEVs for ancillary services.

33 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, the authors proposed a coordinated charging strategy to minimize the power losses and to maximize the main grid load factor of the plug-in hybrid electric vehicles (PHEVs).
Abstract: Alternative vehicles, such as plug-in hybrid electric vehicles, are becoming more popular The batteries of these plug-in hybrid electric vehicles are to be charged at home from a standard outlet or on a corporate car park These extra electrical loads have an impact on the distribution grid which is analyzed in terms of power losses and voltage deviations Without coordination of the charging, the vehicles are charged instantaneously when they are plugged in or after a fixed start delay This uncoordinated power consumption on a local scale can lead to grid problems Therefore, coordinated charging is proposed to minimize the power losses and to maximize the main grid load factor The optimal charging profile of the plug-in hybrid electric vehicles is computed by minimizing the power losses As the exact forecasting of household loads is not possible, stochastic programming is introduced Two main techniques are analyzed: quadratic and dynamic programming

2,601 citations

Journal ArticleDOI
TL;DR: In this paper, the authors survey the literature till 2011 on the enabling technologies for the Smart Grid and explore three major systems, namely the smart infrastructure system, the smart management system, and the smart protection system.
Abstract: The Smart Grid, regarded as the next generation power grid, uses two-way flows of electricity and information to create a widely distributed automated energy delivery network. In this article, we survey the literature till 2011 on the enabling technologies for the Smart Grid. We explore three major systems, namely the smart infrastructure system, the smart management system, and the smart protection system. We also propose possible future directions in each system. colorred{Specifically, for the smart infrastructure system, we explore the smart energy subsystem, the smart information subsystem, and the smart communication subsystem.} For the smart management system, we explore various management objectives, such as improving energy efficiency, profiling demand, maximizing utility, reducing cost, and controlling emission. We also explore various management methods to achieve these objectives. For the smart protection system, we explore various failure protection mechanisms which improve the reliability of the Smart Grid, and explore the security and privacy issues in the Smart Grid.

2,433 citations

01 Jan 2012
TL;DR: This article surveys the literature till 2011 on the enabling technologies for the Smart Grid, and explores three major systems, namely the smart infrastructure system, the smart management system, and the smart protection system.

2,337 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present the current status and implementation of battery chargers, charging power levels, and infrastructure for plug-in electric vehicles and hybrid vehicles and classify them into off-board and on-board types with unidirectional or bidirectional power flow.
Abstract: This paper reviews the current status and implementation of battery chargers, charging power levels, and infrastructure for plug-in electric vehicles and hybrids. Charger systems are categorized into off-board and on-board types with unidirectional or bidirectional power flow. Unidirectional charging limits hardware requirements and simplifies interconnection issues. Bidirectional charging supports battery energy injection back to the grid. Typical on-board chargers restrict power because of weight, space, and cost constraints. They can be integrated with the electric drive to avoid these problems. The availability of charging infrastructure reduces on-board energy storage requirements and costs. On-board charger systems can be conductive or inductive. An off-board charger can be designed for high charging rates and is less constrained by size and weight. Level 1 (convenience), Level 2 (primary), and Level 3 (fast) power levels are discussed. Future aspects such as roadbed charging are presented. Various power level chargers and infrastructure configurations are presented, compared, and evaluated based on amount of power, charging time and location, cost, equipment, and other factors.

2,327 citations

Journal ArticleDOI
TL;DR: In this paper, a review of the different computer tools that can be used to analyse the integration of renewable energy is presented, and the results in this paper provide the information necessary to identify a suitable energy tool for analysing the integration into various energy-systems under different objectives.

1,480 citations