scispace - formally typeset
Search or ask a question
Author

Kristiina Rajamäki

Bio: Kristiina Rajamäki is an academic researcher from University of Helsinki. The author has contributed to research in topics: Inflammasome & Proinflammatory cytokine. The author has an hindex of 10, co-authored 20 publications receiving 647 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: The data suggest that acidic environment represents a novel endogenous danger signal alerting the innate immunity, and may contribute to inflammation in acidosis-associated pathologies such as atherosclerosis and post-ischemic inflammatory responses.

277 citations

Journal ArticleDOI
TL;DR: SAA can induce the expression of pro–IL-1β and activation of the NLRP3 inflammasome via P2X7 receptor and a cathepsin B-sensitive pathway and may promote the production of IL-1 β in tissues during systemic inflammation.
Abstract: Serum amyloid A (SAA) is an acute-phase protein, the serum levels of which can increase up to 1000-fold during inflammation. SAA has a pathogenic role in amyloid A-type amyloidosis, and increased serum levels of SAA correlate with the risk for cardiovascular diseases. IL-1β is a key proinflammatory cytokine, and its secretion is strictly controlled by the inflammasomes. We studied the role of SAA in the regulation of IL-1β production and activation of the inflammasome cascade in human and mouse macrophages, as well as in THP-1 cells. SAA could provide a signal for the induction of pro-IL-1β expression and for inflammasome activation, resulting in secretion of mature IL-1β. Blocking TLR2 and TLR4 attenuated SAA-induced expression of IL1B, whereas inhibition of caspase-1 and the ATP receptor P2X(7) abrogated the release of mature IL-1β. NLRP3 inflammasome consists of the NLRP3 receptor and the adaptor protein apoptosis-associated speck-like protein containing CARD (a caspase-recruitment domain) (ASC). SAA-mediated IL-1β secretion was markedly reduced in ASC(-/-) macrophages, and silencing NLRP3 decreased IL-1β secretion, confirming NLRP3 as the SAA-responsive inflammasome. Inflammasome activation was dependent on cathepsin B activity, but it was not associated with lysosomal destabilization. SAA also induced secretion of cathepsin B and ASC. In conclusion, SAA can induce the expression of pro-IL-1β and activation of the NLRP3 inflammasome via P2X(7) receptor and a cathepsin B-sensitive pathway. Thus, during systemic inflammation, SAA may promote the production of IL-1β in tissues. Furthermore, the SAA-induced secretion of active cathepsin B may lead to extracellular processing of SAA and, thus, potentially to the development of amyloid A amyloidosis.

238 citations

Journal ArticleDOI
TL;DR: Findings provide insight into the interplay between epigenetic modulators and transcription factor activity in hematological neoplasia, but do not confirm the putative role of TET2 in atherosclerosis.
Abstract: Clonal hematopoiesis driven by somatic heterozygous TET2 loss is linked to malignant degeneration via consequent aberrant DNA methylation, and possibly to cardiovascular disease via increased cytokine and chemokine expression as reported in mice. Here, we discover a germline TET2 mutation in a lymphoma family. We observe neither unusual predisposition to atherosclerosis nor abnormal pro-inflammatory cytokine or chemokine expression. The latter finding is confirmed in cells from three additional unrelated TET2 germline mutation carriers. The TET2 defect elevates blood DNA methylation levels, especially at active enhancers and cell-type specific regulatory regions with binding sequences of master transcription factors involved in hematopoiesis. The regions display reduced methylation relative to all open chromatin regions in four DNMT3A germline mutation carriers, potentially due to TET2-mediated oxidation. Our findings provide insight into the interplay between epigenetic modulators and transcription factor activity in hematological neoplasia, but do not confirm the putative role of TET2 in atherosclerosis.

63 citations

Journal ArticleDOI
TL;DR: The p38&dgr; mitogen-activated protein kinase was identified as a novel regulator of NLRP3 inflammasome activation in primary human macrophages, and thus, represents a potential target for modulation of atherosclerotic inflammation.
Abstract: Objective— Activation of the inflammasome pathway in macrophages results in the secretion of 2 potent proinflammatory and proatherogenic cytokines, interleukin (IL)-1β, and IL-18. Atherosclerotic lesions are characterized by the presence of various endogenous activators of the NLR family pyrin domain containing 3 (NLRP3) inflammasome, including cholesterol crystals and extracellular ATP. The aim of this study was to comprehensively characterize the expression of inflammasome pathway components and regulators in human atherosclerotic lesions. Approach and Results— Twenty human coronary artery RNA samples from 10 explanted hearts were analyzed using an inflammasome pathway–focused quantitative polymerase chain reaction array. Advanced atherosclerotic plaques, when compared with early-to-intermediate lesions from the same coronary trees, displayed significant upregulation of 12 target genes, including the key inflammasome components apoptosis-associated speck-like protein containing a CARD domain, caspase-1, and IL-18. Immunohistochemical stainings of the advanced plaques revealed macrophage foam cells positive for NLRP3 inflammasome components around the necrotic lipid cores. The polymerase chain reaction array target p38δ mitogen-activated protein kinase was upregulated in advanced plaques and strongly expressed by lesional macrophage foam cells. In cultured human monocyte–derived macrophages, the p38δ mitogen-activated protein kinase was activated by intracellular stress signals triggered during ATP- and cholesterol crystal–induced NLRP3 inflammasome activation and was required for NLRP3-mediated IL-1β secretion. Conclusions— Increased expression of the key inflammasome components in advanced coronary lesions implies enhanced activity of the inflammasome pathway in progression of coronary atherosclerosis. The p38δ mitogen-activated protein kinase was identified as a novel regulator of NLRP3 inflammasome activation in primary human macrophages, and thus, represents a potential target for modulation of atherosclerotic inflammation.

47 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The NLRP3 inflammasome mediates pro-inflammatory responses and pyroptotic cell death and how it is being targeted to treat inflammatory diseases is described.
Abstract: NLRP3 (NOD-, LRR- and pyrin domain-containing protein 3) is an intracellular sensor that detects a broad range of microbial motifs, endogenous danger signals and environmental irritants, resulting in the formation and activation of the NLRP3 inflammasome. Assembly of the NLRP3 inflammasome leads to caspase 1-dependent release of the pro-inflammatory cytokines IL-1β and IL-18, as well as to gasdermin D-mediated pyroptotic cell death. Recent studies have revealed new regulators of the NLRP3 inflammasome, including new interacting or regulatory proteins, metabolic pathways and a regulatory mitochondrial hub. In this Review, we present the molecular, cell biological and biochemical bases of NLRP3 activation and regulation and describe how this mechanistic understanding is leading to potential therapeutics that target the NLRP3 inflammasome.

2,097 citations

Journal ArticleDOI
TL;DR: Recently identified pro- and anti-inflammatory pathways that link lipid and inflammation biology with the retention of macrophages in plaques, as well as factors that have the potential to promote their egress from these sites are summarized.
Abstract: Atherosclerosis is a chronic inflammatory disease that arises from an imbalance in lipid metabolism and a maladaptive immune response driven by the accumulation of cholesterol-laden macrophages in the artery wall. Through the analysis of the progression and regression of atherosclerosis in animal models, there is a growing understanding that the balance of macrophages in the plaque is dynamic and that both macrophage numbers and the inflammatory phenotype influence plaque fate. In this Review, we summarize recently identified pro- and anti-inflammatory pathways that link lipid and inflammation biology with the retention of macrophages in plaques, as well as factors that have the potential to promote their egress from these sites.

1,862 citations

Journal ArticleDOI
18 Jul 2017-Immunity
TL;DR: The central role played by the P2X7 receptor in promoting inflammation and driving innate and adaptive immunity is discussed, with an in‐depth knowledge of its structure and of the associated signal transduction mechanisms needed for an effective therapeutic development.

714 citations

Journal ArticleDOI
TL;DR: In advanced atherosclerotic lesions, the ratio between specialized pro-resolving mediators and pro-inflammatory lipids is strikingly low, providing a molecular explanation for the defective inflammation resolution features of these lesions.
Abstract: Atherosclerosis is a lipid-driven inflammatory disease of the arterial intima in which the balance of pro-inflammatory and inflammation-resolving mechanisms dictates the final clinical outcome. Intimal infiltration and modification of plasma-derived lipoproteins and their uptake mainly by macrophages, with ensuing formation of lipid-filled foam cells, initiate atherosclerotic lesion formation, and deficient efferocytotic removal of apoptotic cells and foam cells sustains lesion progression. Defective efferocytosis, as a sign of inadequate inflammation resolution, leads to accumulation of secondarily necrotic macrophages and foam cells and the formation of an advanced lesion with a necrotic lipid core, indicative of plaque vulnerability. Resolution of inflammation is mediated by specialized pro-resolving lipid mediators derived from omega-3 fatty acids or arachidonic acid and by relevant proteins and signalling gaseous molecules. One of the major effects of inflammation resolution mediators is phenotypic conversion of pro-inflammatory macrophages into macrophages that suppress inflammation and promote healing. In advanced atherosclerotic lesions, the ratio between specialized pro-resolving mediators and pro-inflammatory lipids (in particular leukotrienes) is strikingly low, providing a molecular explanation for the defective inflammation resolution features of these lesions. In this Review, we discuss the mechanisms of the formation of clinically dangerous atherosclerotic lesions and the potential of pro-resolving mediator therapy to inhibit this process.

712 citations

Journal ArticleDOI
TL;DR: These findings support a model whereby the NLRP3 inflammasome, acting as an extracellular oligomeric complex, amplifies the inflammatory response.
Abstract: Assembly of the NLRP3 inflammasome activates caspase-1 and mediates the processing and release of the leaderless cytokine IL-1β and thereby serves a central role in the inflammatory response and in diverse human diseases. Here we found that upon activation of caspase-1, oligomeric NLRP3 inflammasome particles were released from macrophages. Recombinant oligomeric protein particles composed of the adaptor ASC or the p.D303N mutant form of NLRP3 associated with cryopyrin-associated periodic syndromes (CAPS) stimulated further activation of caspase-1 extracellularly, as well as intracellularly after phagocytosis by surrounding macrophages. We found oligomeric ASC particles in the serum of patients with active CAPS but not in that of patients with other inherited autoinflammatory diseases. Our findings support a model whereby the NLRP3 inflammasome, acting as an extracellular oligomeric complex, amplifies the inflammatory response.

655 citations