scispace - formally typeset
Search or ask a question
Author

Kristin R. Swanson

Bio: Kristin R. Swanson is an academic researcher from Mayo Clinic. The author has contributed to research in topics: Glioma & Brain tumor. The author has an hindex of 47, co-authored 183 publications receiving 7761 citations. Previous affiliations of Kristin R. Swanson include University of Washington & Arizona's Public Universities.


Papers
More filters
Journal ArticleDOI
TL;DR: A review of the recent developments in mathematical modeling of gliomas can be found in this article, where the authors conclude that the velocity of expansion is linear with time and varies about 10-fold, from about 4 mm/year for low-grade glioma to about 3 mm/month for high-grade ones.

563 citations

Journal ArticleDOI
TL;DR: Untreated low‐grade oligodendrogliomas or mixed gliomas grow continuously during their premalignant phase, and their pattern of growth can be predicted within a relatively narrow range, according to a mixed model.
Abstract: Serial magnetic resonance images of 27 patients with untreated World Health Organization grade II oligodendrogliomas or mixed gliomas were reviewed retrospectively to study the kinetics of tumor growth before anaplastic transformation. Analysis of the mean tumor diameters over time showed constant growth. Linear regression, using a mixed model, found an average slope of 4.1mm per year (95% confidence interval, 3.8-4.4mm/year). Untreated low-grade oligodendrogliomas or mixed gliomas grow continuously during their premalignant phase, and their pattern of growth can be predicted within a relatively narrow range. These findings could be of interest to optimize patients management and follow-up.

455 citations

Journal ArticleDOI
TL;DR: Using a detailed mapping of the white and grey matter in the brain developed for a MRI simulator, a mathematical model of gliomas is extended to incorporate the effects of augmented cell motility in white matter as compared to grey matter to give insight into microscopic and submicroscopic invasion of the human brain by glioma cells.
Abstract: We have extended a mathematical model of gliomas based on proliferation and diffusion rates to incorporate the effects of augmented cell motility in white matter as compared to grey matter. Using a detailed mapping of the white and grey matter in the brain developed for a MRI simulator, we have been able to simulate model tumours on an anatomically accurate brain domain. Our simulations show good agreement with clinically observed tumour geometries and suggest paths of submicroscopic tumour invasion not detectable on CT or MRI images. We expect this model to give insight into microscopic and submicroscopic invasion of the human brain by glioma cells. This method gives insight in microscopic and submicroscopic invasion of the human brain by glioma cells. Additionally, the model can be useful in defining expected pathways of invasion by glioma cells and thereby identify regions of the brain on which to focus treatments.

432 citations

Journal ArticleDOI
TL;DR: This review provides an overview of the clinical literature to support a central hypothesis: that all GBM patients have tumor regions with an intact BBB, and cure for GBM will only be possible if these regions of tumor are adequately treated.
Abstract: The blood-brain barrier (BBB) excludes the vast majority of cancer therapeutics from normal brain. However, the importance of the BBB in limiting drug delivery and efficacy is controversial in high-grade brain tumors, such as glioblastoma (GBM). The accumulation of normally brain impenetrant radiographic contrast material in essentially all GBM has popularized a belief that the BBB is uniformly disrupted in all GBM patients so that consideration of drug distribution across the BBB is not relevant in designing therapies for GBM. However, contrary to this view, overwhelming clinical evidence demonstrates that there is also a clinically significant tumor burden with an intact BBB in all GBM, and there is little doubt that drugs with poor BBB permeability do not provide therapeutically effective drug exposures to this fraction of tumor cells. This review provides an overview of the clinical literature to support a central hypothesis: that all GBM patients have tumor regions with an intact BBB, and cure for GBM will only be possible if these regions of tumor are adequately treated.

377 citations

Journal ArticleDOI
TL;DR: A history of the use of mathematical modeling in the study of the proliferative-invasive growth of gliomas is presented, illustrating the progress made in understanding the in vivo dynamics of invasion and proliferation of tumor cells.
Abstract: Gliomas are well known for their potential for aggressive proliferation as well as their diffuse invasion of the normal-appearing parenchyma peripheral to the bulk lesion. This review presents a history of the use of mathematical modeling in the study of the proliferative-invasive growth of gliomas, illustrating the progress made in understanding the in vivo dynamics of invasion and proliferation of tumor cells. Mathematical modeling is based on a sequence of observation, speculation, development of hypotheses to be tested, and comparisons between theory and reality. These mathematical investigations, iteratively compared with experimental and clinical work, demonstrate the essential relationship between experimental and theoretical approaches. Together, these efforts have extended our knowledge and insight into in vivo brain tumor growth dynamics that should enhance current diagnoses and treatments.

296 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors describe the rules of the ring, the ring population, and the need to get off the ring in order to measure the movement of a cyclic clock.
Abstract: 1980 Preface * 1999 Preface * 1999 Acknowledgements * Introduction * 1 Circular Logic * 2 Phase Singularities (Screwy Results of Circular Logic) * 3 The Rules of the Ring * 4 Ring Populations * 5 Getting Off the Ring * 6 Attracting Cycles and Isochrons * 7 Measuring the Trajectories of a Circadian Clock * 8 Populations of Attractor Cycle Oscillators * 9 Excitable Kinetics and Excitable Media * 10 The Varieties of Phaseless Experience: In Which the Geometrical Orderliness of Rhythmic Organization Breaks Down in Diverse Ways * 11 The Firefly Machine 12 Energy Metabolism in Cells * 13 The Malonic Acid Reagent ('Sodium Geometrate') * 14 Electrical Rhythmicity and Excitability in Cell Membranes * 15 The Aggregation of Slime Mold Amoebae * 16 Numerical Organizing Centers * 17 Electrical Singular Filaments in the Heart Wall * 18 Pattern Formation in the Fungi * 19 Circadian Rhythms in General * 20 The Circadian Clocks of Insect Eclosion * 21 The Flower of Kalanchoe * 22 The Cell Mitotic Cycle * 23 The Female Cycle * References * Index of Names * Index of Subjects

3,424 citations

01 Jan 2013
TL;DR: In this article, the landscape of somatic genomic alterations based on multidimensional and comprehensive characterization of more than 500 glioblastoma tumors (GBMs) was described, including several novel mutated genes as well as complex rearrangements of signature receptors, including EGFR and PDGFRA.
Abstract: We describe the landscape of somatic genomic alterations based on multidimensional and comprehensive characterization of more than 500 glioblastoma tumors (GBMs). We identify several novel mutated genes as well as complex rearrangements of signature receptors, including EGFR and PDGFRA. TERT promoter mutations are shown to correlate with elevated mRNA expression, supporting a role in telomerase reactivation. Correlative analyses confirm that the survival advantage of the proneural subtype is conferred by the G-CIMP phenotype, and MGMT DNA methylation may be a predictive biomarker for treatment response only in classical subtype GBM. Integrative analysis of genomic and proteomic profiles challenges the notion of therapeutic inhibition of a pathway as an alternative to inhibition of the target itself. These data will facilitate the discovery of therapeutic and diagnostic target candidates, the validation of research and clinical observations and the generation of unanticipated hypotheses that can advance our molecular understanding of this lethal cancer.

2,616 citations

Journal ArticleDOI
TL;DR: This set of labels and features should enable direct utilization of the TCGA/TCIA glioma collections towards repeatable, reproducible and comparative quantitative studies leading to new predictive, prognostic, and diagnostic assessments, as well as performance evaluation of computer-aided segmentation methods.
Abstract: Gliomas belong to a group of central nervous system tumors, and consist of various sub-regions. Gold standard labeling of these sub-regions in radiographic imaging is essential for both clinical and computational studies, including radiomic and radiogenomic analyses. Towards this end, we release segmentation labels and radiomic features for all pre-operative multimodal magnetic resonance imaging (MRI) (n=243) of the multi-institutional glioma collections of The Cancer Genome Atlas (TCGA), publicly available in The Cancer Imaging Archive (TCIA). Pre-operative scans were identified in both glioblastoma (TCGA-GBM, n=135) and low-grade-glioma (TCGA-LGG, n=108) collections via radiological assessment. The glioma sub-region labels were produced by an automated state-of-the-art method and manually revised by an expert board-certified neuroradiologist. An extensive panel of radiomic features was extracted based on the manually-revised labels. This set of labels and features should enable i) direct utilization of the TCGA/TCIA glioma collections towards repeatable, reproducible and comparative quantitative studies leading to new predictive, prognostic, and diagnostic assessments, as well as ii) performance evaluation of computer-aided segmentation methods, and comparison to our state-of-the-art method.

1,818 citations

01 Jan 2016
TL;DR: As you may know, people have search numerous times for their chosen novels like this statistical parametric mapping the analysis of functional brain images, but end up in malicious downloads.
Abstract: Thank you very much for reading statistical parametric mapping the analysis of functional brain images. As you may know, people have search numerous times for their chosen novels like this statistical parametric mapping the analysis of functional brain images, but end up in malicious downloads. Rather than enjoying a good book with a cup of coffee in the afternoon, instead they cope with some infectious bugs inside their desktop computer.

1,719 citations

Journal ArticleDOI
TL;DR: This text is a general introduction to radiation biology and a complete, self-contained course especially for residents in diagnostic radiology and nuclear medicine that follows the Syllabus in Radiation Biology of the RSNA.
Abstract: The text consists of two sections, one for those studying or practicing diagnostic radiology, nuclear medicine and radiation oncology; the other for those engaged in the study or clinical practice of radiation oncology--a new chapter, on radiologic terrorism, is specifically for those in the radiation sciences who would manage exposed individuals in the event of a terrorist event. The 17 chapters in Section I represent a general introduction to radiation biology and a complete, self-contained course especially for residents in diagnostic radiology and nuclear medicine that follows the Syllabus in Radiation Biology of the RSNA. The 11 chapters in Section II address more in-depth topics in radiation oncology, such as cancer biology, retreatment after radiotherapy, chemotherapeutic agents and hyperthermia.

1,359 citations