scispace - formally typeset
Search or ask a question
Author

Kristin Y. Pettersen

Bio: Kristin Y. Pettersen is an academic researcher from Norwegian University of Science and Technology. The author has contributed to research in topics: Robot & Underactuation. The author has an hindex of 47, co-authored 324 publications receiving 8325 citations. Previous affiliations of Kristin Y. Pettersen include Eindhoven University of Technology & Norwegian Institute of Technology.


Papers
More filters
Journal ArticleDOI
TL;DR: A simple state-feedback control law is developed and proved to render the tracking error dynamics globally K- exponentially stable.
Abstract: In this paper, we address the tracking problem for an underactuated ship using two controls, namely surge force and yaw moment. A simple state-feedback control law is developed and proved to render the tracking error dynamics globally K- exponentially stable. Experimental results are presented where the controller is implemented on a scale model of an offshore supply vessel.

362 citations

Journal ArticleDOI
TL;DR: A nonlinear adaptive path following controller that compensates for drift forces through vehicle sideslip that is motivated by a line-of-sight (LOS) guidance principle used by ancient navigators and intended for maneuvering in the horizontal-plane at given speeds.
Abstract: We present a nonlinear adaptive path following controller that compensates for drift forces through vehicle sideslip. Vehicle sideslip arises during path following when the vehicle is subject to drift forces caused by ocean currents, wind, and waves. The proposed algorithm is motivated by a line-of-sight (LOS) guidance principle used by ancient navigators, which is here extended to path following of Dubins paths. The unknown sideslip angle is treated as a constant parameter, which is estimated using an adaptation law. The equilibrium points of the cross-track and parameter estimation errors are proven to be uniformly semiglobally exponentially stable. This guarantees that the estimated sideslip angle converges to its true value exponentially. The adaptive control law is in fact an integral LOS controller for path following since the parameter adaptation law provides integral action. The proposed guidance law is intended for maneuvering in the horizontal-plane at given speeds and typical applications are marine craft, autonomous underwater vehicles, unmanned aerial vehicles as well as other vehicles and crafts, where the goal is to follow a predefined parametrized curve without time constraints. Two vehicle cases studies are included to verify the theoretical results.

359 citations

Journal ArticleDOI
TL;DR: In this article, a tracking control law for an offshore supply vessel with two control parameters, namely surge force and yaw moment, is presented. But the model has similarities with chained form systems but cannot directly be transformed in chained form.
Abstract: We consider complete state tracking feedback control of a ship having two controls, namely surge force and yaw moment. The ship model has similarities with chained form systems but cannot directly be transformed in chained form. In particular, the model has a drift vector field as opposed to the drift-free chained form systems. It is shown here that methods developed for tracking control of chained form systems still can be used for developing a tracking control law for the ship. Through a coordinate transformation the model is put in a triangular-like form which makes it possible to use integrator backstepping to develop a tracking control law. The control law steers both the position variables and the course angle of the ship, providing exponential stability of the reference trajectory. Experimental results are presented where the control law is implemented for tracking control of a model of an offshore supply vessel, scale 1:70. In the experiments the ship converges exponentially to a neighbourhood of ...

252 citations

Proceedings ArticleDOI
01 Dec 2008
TL;DR: This work proposes a modified LOS guidance law with integral action for counteracting environmental disturbances and shows that this approach guarantees global asymptotic path following of straight-line paths in the presence of constant and irrotational ocean currents.
Abstract: In this paper, we consider the development of a control strategy for path following of underactuated marine surface vessels in the presence of ocean currents. The proposed control strategy is based on a modified Line-of-Sight (LOS) guidance law with integral action and a pair of adaptive feedback controllers. Traditional LOS guidance has several nice properties and is widely used in practice for path following of marine vehicles. However, it has the drawback of being susceptible to environmental disturbances. In this work, we propose a modified LOS guidance law with integral action for counteracting environmental disturbances. Paired with a set of adaptive feedback controllers, we show that this approach guarantees global asymptotic path following of straight-line paths in the presence constant and irrotational ocean currents.

237 citations

Journal ArticleDOI
TL;DR: An extensive analysis of the integral line-of-sight (ILOS) guidance method for path-following tasks of underactuated marine vehicles, operating on and below the sea surface shows that due to the embedded integral action, the guidance law makes the vessels follow straight lines by compensating for the drift effect of environmental disturbances.
Abstract: This paper presents an extensive analysis of the integral line-of-sight (ILOS) guidance method for path-following tasks of underactuated marine vehicles, operating on and below the sea surface. It is shown that due to the embedded integral action, the guidance law makes the vessels follow straight lines by compensating for the drift effect of environmental disturbances, such as currents, wind, and waves. The ILOS guidance is first applied to a 2-D model of surface vessels that includes the underactauted sway dynamics of the vehicle as well as disturbances in the form of constant irrotational ocean currents and constant dynamic, attitude dependent, and forces. The actuated dynamics are not considered at this point. A Lyapunov closed-loop analysis yields explicit bounds on the guidance law gains to guarantee uniform global asymptotic stability (UGAS) and uniform local exponential stability (ULES). The complete kinematic and dynamic closed-loop system of the 3-D ILOS guidance law is analyzed in the following and hence extending the analysis to underactuated autonomous underwater vehicles (AUVs) for the 3-D straight-line path-following applications in the presence of constant irrotational ocean currents. The actuated surge, pitch, and yaw dynamics are included in the analysis where the closed-loop system forms a cascade, and the properties of UGAS and ULES are shown. The 3-D ILOS control system is a generalization of the 2-D ILOS guidance. Finally, results from simulations and experiments are presented to validate and illustrate the theoretical results, where the 2-D ILOS guidance is applied to the cooperative autonomous robotics towing system vehicle and light AUV.

233 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Posted Content
TL;DR: This paper proposes gradient descent algorithms for a class of utility functions which encode optimal coverage and sensing policies which are adaptive, distributed, asynchronous, and verifiably correct.
Abstract: This paper presents control and coordination algorithms for groups of vehicles. The focus is on autonomous vehicle networks performing distributed sensing tasks where each vehicle plays the role of a mobile tunable sensor. The paper proposes gradient descent algorithms for a class of utility functions which encode optimal coverage and sensing policies. The resulting closed-loop behavior is adaptive, distributed, asynchronous, and verifiably correct.

2,198 citations

Journal ArticleDOI
TL;DR: This discussion elucidates what has been articulated in different ways by a number of researchers in the past several years, namely that constant-curvature kinematics can be considered as consisting of two separate submappings: one that is general and applies to all continuum robots, and another that is robot-specific.
Abstract: Continuum robotics has rapidly become a rich and diverse area of research, with many designs and applications demonstrated. Despite this diversity in form and purpose, there exists remarkable similarity in the fundamental simplified kinematic models that have been applied to continuum robots. However, this can easily be obscured, especially to a newcomer to the field, by the different applications, coordinate frame choices, and analytical formalisms employed. In this paper we review several modeling approaches in a common frame and notational convention, illustrating that for piecewise constant curvature, they produce identical results. This discussion elucidates what has been articulated in different ways by a number of researchers in the past several years, namely that constant-curvature kinematics can be considered as consisting of two separate submappings: one that is general and applies to all continuum robots, and another that is robot-specific. These mappings are then developed both for the single-section and for the multi-section case. Similarly, we discuss the decomposition of differential kinematics (the robotâ??s Jacobian) into robot-specific and robot-independent portions. The paper concludes with a perspective on several of the themes of current research that are shaping the future of continuum robotics.

1,600 citations