scispace - formally typeset
Search or ask a question
Author

Kristina Kadlec

Bio: Kristina Kadlec is an academic researcher from Friedrich Loeffler Institute. The author has contributed to research in topics: Plasmid & Methicillin-resistant Staphylococcus aureus. The author has an hindex of 42, co-authored 113 publications receiving 5570 citations.


Papers
More filters
Journal ArticleDOI
06 Apr 2011-PLOS ONE
TL;DR: A high level of biodiversity among MRSA, especially among strains harbouring SCCmec IV and V elements is shown, and the data indicate a high rate of genetic recombination in MRSA involving SCC elements, bacteriophages or other mobile genetic elements and large-scale chromosomal replacements.
Abstract: In recent years, methicillin-resistant Staphylococcus aureus (MRSA) have become a truly global challenge. In addition to the long-known healthcare-associated clones, novel strains have also emerged outside of the hospital settings, in the community as well as in livestock. The emergence and spread of virulent clones expressing Panton-Valentine leukocidin (PVL) is an additional cause for concern. In order to provide an overview of pandemic, epidemic and sporadic strains, more than 3,000 clinical and veterinary isolates of MRSA mainly from Germany, the United Kingdom, Ireland, France, Malta, Abu Dhabi, Hong Kong, Australia, Trinidad & Tobago as well as some reference strains from the United States have been genotyped by DNA microarray analysis. This technique allowed the assignment of the MRSA isolates to 34 distinct lineages which can be clearly defined based on non-mobile genes. The results were in accordance with data from multilocus sequence typing. More than 100 different strains were distinguished based on affiliation to these lineages, SCCmec type and the presence or absence of PVL. These strains are described here mainly with regard to clinically relevant antimicrobial resistance- and virulence-associated markers, but also in relation to epidemiology and geographic distribution. The findings of the study show a high level of biodiversity among MRSA, especially among strains harbouring SCCmec IV and V elements. The data also indicate a high rate of genetic recombination in MRSA involving SCC elements, bacteriophages or other mobile genetic elements and large-scale chromosomal replacements.

834 citations

Journal ArticleDOI
TL;DR: Two major clonal MRSP lineages have disseminated in Europe and North America and regardless of their geographical or clonal origin, the isolates displayed resistance to the major classes of antibiotics used in veterinary medicine and thus infections caused by MRSP isolates represent a serious therapeutic challenge.
Abstract: gentamicin/kanamycin [aac(6 ′ )-Ie‐aph(2 ′ )-Ia] (88.3%), kanamycin [aph(3 ′ )-III] (90.3%), streptomycin [ant(6 ′ )Ia] (90.3%), streptothricin (sat4) (90.3%), macrolides and/or lincosamides [erm(B), lnu(A)] (89.3%), fluoroquinolones (87.4%), tetracycline [tet(M) and/or tet(K)] (69.9%), chloramphenicol (catpC221) (57.3%) and rifampicin (1.9%). Conclusions: Two major clonal MRSP lineages have disseminated in Europe (ST71-J-t02-II ‐III) and North America (ST68-C-t06-V). Regardless of their geographical or clonal origin, the isolates displayed resistance to the major classes of antibiotics used in veterinary medicine and thus infections caused by MRSP isolates represent a serious therapeutic challenge.

429 citations

Journal ArticleDOI
TL;DR: A uniform virulence gene pattern appeared to be conserved between ST398 isolates from both animal species and when ApaI PFGE profiles and other genotypic and phenotypic characteristics were compared.
Abstract: Twenty-five MRSA ST398 isolates from cases of bovine clinical mastitis and two isolates from farm personnel collected from 17 dairy farms in Germany were investigated for genetic relatedness, antimicrobial resistance and virulence properties. Genomic relationships were determined by ApaI PFGE, spa typing, SCCmec typing and dru typing. Antimicrobial resistance phenotypes were determined by broth microdilution. Resistance and virulence genes were detected via a diagnostic DNA microarray and specific PCRs. Nine major ApaI PFGE patterns were detected. Three spa types (t011, t034 and t2576) and two SCCmec types (IV and V) were identified. Five different dru types were seen with dt11a being predominant. All isolates were negative for Panton-Valentine leucocidin, enterotoxin and exfoliative toxin genes. Ten resistance patterns were observed with 11 (40.7%) isolates being resistant to only beta-lactam antibiotics and tetracyclines. Several resistance genes were detected: blaZ (penicillin resistance); tet(M), tet(K) and tet(L) (tetracycline resistance); erm(A), erm(B), erm(C) and erm(T) (macrolide/lincosamide/streptogramin B resistance); aacA-aphD, aphA3, aadD and spc (aminoglycoside or aminocyclitol resistance); fexA (phenicol resistance); dfrK (trimethoprim resistance); and vga(A) and vga(C) (pleuromutilin/lincosamide/streptogramin A resistance). The two human isolates were indistinguishable in their genotypic and phenotypic characteristics from the mastitis isolates of the same farm. As previously described for ST398 from swine, isolates of this sequence type from cases of bovine mastitis also demonstrated a high degree of variability when ApaI PFGE profiles and other genotypic and phenotypic characteristics were compared. A uniform virulence gene pattern appeared to be conserved between ST398 isolates from both animal species

277 citations

Journal ArticleDOI
TL;DR: The presence of multiresistant and, in part, enterotoxigenic MRSA emphasizes the need for further studies to elucidate possible health hazards for consumers.
Abstract: During a survey of fresh chicken and turkey meat as well as chicken and turkey meat products for the presence of methicillin-resistant Staphylococcus aureus (MRSA) isolates in Germany, 32 (37.2%) of 86 samples were MRSA positive. Twenty-eight of these MRSA isolates belonged to clonal complex 398 (CC398), which is widespread among food-producing animals. These CC398 isolates carried SCCmec elements of type IV or V and exhibited spa type t011, t034, t899, t2346 or t6574 and either the known dru types dt2b, dt6j, dt10a, dt10q, dt11a, dt11v, and dt11ab or the novel dru types dt6m, dt10as, and dt10at. In addition, two MRSA sequence type 9 (ST9) isolates with a type IV SCCmec cassette, spa type t1430, and dru type dt10a as well as single MRSA ST5 and ST1791 isolates with a type III SCCmec cassette, spa type t002, and dru type dt9v were identified. All but two isolates were classified as multiresistant. A wide variety of resistance phenotypes and genotypes were detected. All isolates were negative for the major virulence factors, such as Panton-Valentine leukocidin, toxic shock syndrome toxin 1, or exfoliative toxins. In contrast to the MRSA CC398 isolates, the four ST9, ST5, or ST1791 isolates harbored the egc gene cluster for enterotoxin G, I, M, N, O, and U genes. Although the relevance of contamination of fresh poultry meat or poultry products with MRSA is currently unclear, the presence of multiresistant and, in part, enterotoxigenic MRSA emphasizes the need for further studies to elucidate possible health hazards for consumers.

206 citations

Journal ArticleDOI
TL;DR: MRSA ST398 isolates varied slightly in their virulence properties and spa types but differed distinctly in their antimicrobial resistance pheno- and genotypes as well as their ApaI-PFGE patterns.
Abstract: Fifty-four methicillin-resistant Staphylococcus aureus (MRSA) ST398 isolates from unrelated diseased swine collected all over Germany were comparatively investigated for their antimicrobial resistance and virulence properties, and for their genomic relatedness. MICs of 30 antimicrobial agents were determined by broth microdilution. Resistance and virulence genes were detected via a diagnostic DNA microarray and specific PCRs. The genomic relationships were determined by ApaI-PFGE, spa typing and SCCmec typing. Twenty-two distinct resistance patterns were observed. All 54 isolates were tetracycline resistant, mediated by tet(M), tet(K) and/or tet(L), with 14 isolates being only resistant to beta-lactam antibiotics and tetracyclines. Trimethoprim resistance, seen in 28 isolates, was mostly due to the gene dfrK or dfrG. Among the 24 macrolide/lincosamide-resistant isolates, the genes erm(A), erm(B) and/or erm(C) were detected. The two chloramphenicol/florfenicol-resistant isolates harboured the gene fexA. The eight gentamicin-resistant isolates carried the gene aacA/aphD. Fifty-three isolates harboured SCCmec type V elements while the remaining one carried mecA and ugpQ, but no recombinase genes. All isolates were PVL negative, but one and three isolates, respectively, were positive for the enterotoxin B and enterotoxin K and Q genes. Eight different spa types were identified with t011 being the most predominant. Six ApaI-PFGE clusters with up to nine individual patterns were detected. MRSA ST398 isolates varied slightly in their virulence properties and spa types but differed distinctly in their antimicrobial resistance pheno- and genotypes as well as their ApaI-PFGE patterns. These data underline the ability of ST398 to acquire genetic material that might increase antimicrobial resistance and virulence

160 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper , the authors presented the most comprehensive estimates of AMR burden to date, which can be divided into five broad components: number of deaths where infection played a role, proportion of infectious deaths attributable to a given infectious syndrome, proportionof infectious syndrome deaths attributed to a particular pathogen, the percentage of a given pathogen resistant to an antibiotic of interest, and the excess risk of death or duration of an infection associated with this resistance.

2,710 citations

Journal ArticleDOI
TL;DR: This study provides the first comprehensive assessment of the global burden of AMR, as well as an evaluation of the availability of data, and estimates aggregated to the global and regional level.

2,222 citations

Journal ArticleDOI
TL;DR: This review details the epidemiology of CA-MRSA strains and the clinical spectrum of infectious syndromes associated with them that ranges from a commensal state to severe, overwhelming infection and addresses the therapy of these infections and strategies for their prevention.
Abstract: Summary: Staphylococcus aureus is an important cause of skin and soft-tissue infections (SSTIs), endovascular infections, pneumonia, septic arthritis, endocarditis, osteomyelitis, foreign-body infections, and sepsis. Methicillin-resistant S. aureus (MRSA) isolates were once confined largely to hospitals, other health care environments, and patients frequenting these facilities. Since the mid-1990s, however, there has been an explosion in the number of MRSA infections reported in populations lacking risk factors for exposure to the health care system. This increase in the incidence of MRSA infection has been associated with the recognition of new MRSA clones known as community-associated MRSA (CA-MRSA). CA-MRSA strains differ from the older, health care-associated MRSA strains; they infect a different group of patients, they cause different clinical syndromes, they differ in antimicrobial susceptibility patterns, they spread rapidly among healthy people in the community, and they frequently cause infections in health care environments as well. This review details what is known about the epidemiology of CA-MRSA strains and the clinical spectrum of infectious syndromes associated with them that ranges from a commensal state to severe, overwhelming infection. It also addresses the therapy of these infections and strategies for their prevention.

1,807 citations

Journal ArticleDOI
28 Aug 2014
TL;DR: In this review the factors that have been linked to the waxing of bacterial resistance are addressed and profiles of bacterial species that are deemed to be particularly concerning at the present time are illustrated.
Abstract: Dangerous, antibiotic resistant bacteria have been observed with increasing frequency over the past several decades. In this review the factors that have been linked to this phenomenon are addressed. Profiles of bacterial species that are deemed to be particularly concerning at the present time are illustrated. Factors including economic impact, intrinsic and acquired drug resistance, morbidity and mortality rates, and means of infection are taken into account. Synchronously with the waxing of bacterial resistance there has been waning antibiotic development. The approaches that scientists are employing in the pursuit of new antibacterial agents are briefly described. The standings of established antibiotic classes as well as potentially emerging classes are assessed with an emphasis on molecules that have been clinically approved or are in advanced stages of development. Historical perspectives, mechanisms of action and resistance, spectrum of activity, and preeminent members of each class are discussed.

1,467 citations

Journal ArticleDOI
TL;DR: The characteristics of the major types of mobile genetic elements involved in acquisition and spread of antibiotic resistance in both Gram-negative and Gram-positive bacteria are outlined, focusing on the so-called ESKAPEE group of organisms, which have become the most problematic hospital pathogens.
Abstract: SUMMARY Strains of bacteria resistant to antibiotics, particularly those that are multiresistant, are an increasing major health care problem around the world. It is now abundantly clear that both Gram-negative and Gram-positive bacteria are able to meet the evolutionary challenge of combating antimicrobial chemotherapy, often by acquiring preexisting resistance determinants from the bacterial gene pool. This is achieved through the concerted activities of mobile genetic elements able to move within or between DNA molecules, which include insertion sequences, transposons, and gene cassettes/integrons, and those that are able to transfer between bacterial cells, such as plasmids and integrative conjugative elements. Together these elements play a central role in facilitating horizontal genetic exchange and therefore promote the acquisition and spread of resistance genes. This review aims to outline the characteristics of the major types of mobile genetic elements involved in acquisition and spread of antibiotic resistance in both Gram-negative and Gram-positive bacteria, focusing on the so-called ESKAPEE group of organisms (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter spp., and Escherichia coli), which have become the most problematic hospital pathogens.

1,162 citations