scispace - formally typeset
Search or ask a question
Author

Kristina Reimhult

Bio: Kristina Reimhult is an academic researcher. The author has contributed to research in topics: Molecularly imprinted polymer & Nanoparticle. The author has an hindex of 4, co-authored 6 publications receiving 583 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: New synthetic conditions are initiated to obtain MIP beads with controllable size in the nano- to micro-meter range, using racemic propranolol as a model template, and the imprinted sites displayed high chiral selectivity.

387 citations

Journal ArticleDOI
22 Jul 2008-Langmuir
TL;DR: A comparison of the ability of traditionally used blocking agents and poly(ethylene glycol) (PEG) derivatives to prevent protein adsorption on both gold and polystyrene surfaces shows that on pure gold the PEG-thiols are superior to the other blocking molecules tested, with the end group and length of the PELs used being of minor importance.
Abstract: With today's developments of biosensors and medical implants comes the need for efficient reduction of nonspecific binding. We report on a comparison of the ability of traditionally used blocking agents and poly(ethylene glycol) (PEG) derivatives to prevent protein adsorption on both gold and polystyrene surfaces. The adsorption kinetics of blocking molecules and proteins was monitored gravimetrically using quartz crystal microbalance with dissipation (QCM-D). The resistance to nonspecific adsorption was evaluated on gold and polystyrene surfaces coated with bovine serum albumin (BSA) or casein, gold coated with three different 6-11 ethylene glycol (EG) long hydroxyl- or methoxy-terminated PEG-thiolates and polystyrene blocked with a PLL-g-PEG or three different 12 EG long benzyl-PEG-derivatives. The prevention of protein adsorption on the coated surfaces was evaluated by monitoring the mass uptake at the addition of both pure prostate specific antigen (PSA) and seminal plasma. We demonstrate that on pure gold the PEG-thiols are superior to the other blocking molecules tested, with the end group and length of the PEG-thiols used being of minor importance. On polystyrene surfaces blocking with PLL-g-PEG, BSA and casein gave the best results. These results have an impact on further development of an optimized immunoassay protocol.

114 citations

Journal ArticleDOI
TL;DR: In this article, the authors functionalized quartz crystal microbalance (QCM) sensor crystals by coating the sensing surfaces with pre-made molecularly imprinted nanoparticles, which were immobilized on the QCM transducers by physical entrapment in a thin poly(ethylene terephthalate) (PET) layer that was spin-coated on the transducer surface.

110 citations

Patent
10 Feb 2010
TL;DR: In this article, a method of manufacturing at least one customized MIP unit including: (a) providing at least MIP units having a surface including a target binding site configured to resemble a target molecule and surface-bound chargeable groups, and (b) contacting the mIP unit from the step with at least 1 template molecule in a first solvent allowing the template molecule(s) to bind to the mip unit(s).
Abstract: A method of manufacturing at least one customized MIP unit including: (a) providing at least one MIP unit having a surface including at least one target binding site configured to resemble a target molecule and surface-bound chargeable groups; (b) contacting the MIP unit(s) from the step (a) with at least one template molecule in a first solvent allowing the template molecule(s) to bind to the MIP unit(s); (c) passivating the surface-bound chargeable groups on the MIP unit(s) by adding a passivating agent; and (d) removing the template molecule(s) by washing in a second solvent, wherein the passivating agent binds to the surface of the unit(s) through bonds which remain stable upon washing in the second solvent.

12 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This critical review briefly reviews the current status of MIT, particular emphasis on significant progresses of novel imprinting methods, some challenges and effective strategies for MIT, and highlighted applications of MIPs.
Abstract: Molecular imprinting technology (MIT) concerns formation of selective sites in a polymer matrix with the memory of a template. Recently, molecularly imprinted polymers (MIPs) have aroused extensive attention and been widely applied in many fields, such as solid-phase extraction, chemical sensors and artificial antibodies owing to their desired selectivity, physical robustness, thermal stability, as well as low cost and easy preparation. With the rapid development of MIT as a research hotspot, it faces a number of challenges, involving biological macromolecule imprinting, heterogeneous binding sites, template leakage, incompatibility with aqueous media, low binding capacity and slow mass transfer, which restricts its applications in various aspects. This critical review briefly reviews the current status of MIT, particular emphasis on significant progresses of novel imprinting methods, some challenges and effective strategies for MIT, and highlighted applications of MIPs. Finally, some significant attempts in further developing MIT are also proposed (236 references).

1,468 citations

Journal ArticleDOI
TL;DR: Theoretical and experimental parameters for MIPs design in terms of the interaction between template and polymer functionalities will be considered and synthesis methods for the improvement of MIP recognition properties will also be presented.
Abstract: Molecular Imprinting Technology (MIT) is a technique to design artificial receptors with a predetermined selectivity and specificity for a given analyte, which can be used as ideal materials in various application fields. Molecularly Imprinted Polymers (MIPs), the polymeric matrices obtained using the imprinting technology, are robust molecular recognition elements able to mimic natural recognition entities, such as antibodies and biological receptors, useful to separate and analyze complicated samples such as biological fluids and environmental samples. The scope of this review is to provide a general overview on MIPs field discussing first general aspects in MIP preparation and then dealing with various application aspects. This review aims to outline the molecularly imprinted process and present a summary of principal application fields of molecularly imprinted polymers, focusing on chemical sensing, separation science, drug delivery and catalysis. Some significant aspects about preparation and application of the molecular imprinting polymers with examples taken from the recent literature will be discussed. Theoretical and experimental parameters for MIPs design in terms of the interaction between template and polymer functionalities will be considered and synthesis methods for the improvement of MIP recognition properties will also be presented.

804 citations

Journal ArticleDOI
TL;DR: Using simple molecular building blocks, material chemists can now produce tailored synthetic materials of much improved stabilities able to replace or complement natural receptors, allowing research and application problems to be solved.
Abstract: Molecular imprinting is a versatile technique providing functional materials able to recognize and in some cases respond to biological and chemical agents of interest. In contrast to biological antibodies, the best known receptors derived from biological combinatorial processes, molecularly imprinted polymers (MIPs) are obtained by template-directed synthesis. Thus, molecular imprinting can more properly be characterized as a "rational design" approach, allowing research and application problems to be solved. Using simple molecular building blocks, material chemists can now produce tailored synthetic materials of much improved stabilities able to replace or complement natural receptors.

555 citations

Journal ArticleDOI
TL;DR: Bioactive paper includes a range of potential paper-based materials that can perform analytical functions normally reserved for multi-well plates in the laboratory or for portable electronic devices.
Abstract: Bioactive paper includes a range of potential paper-based materials that can perform analytical functions normally reserved for multi-well plates in the laboratory or for portable electronic devices. Pathogen detection is the most compelling application. Simple paper-based detection, not requiring hardware, has the potential to have impacts in society, ranging from the kitchen to disasters in the developing world. Bioactive-paper research is an emerging field with significant efforts in Canada, USA (Harvard), Finland and Australia. Following a brief introduction to the material and surface properties of paper, I review the literature. Some of the early work exploits the porosity of paper to generate paper-based microfluidics ("paperfluidics") devices. I exclude from this review printed electronic devices and plastics-supported devices.

538 citations

Journal ArticleDOI
TL;DR: In this special review, the reviews in recent ca.
Abstract: Molecular imprinted polymer is an artificial receptor made by imprinting molecules of a template in a polymer matrix followed by removing the template molecules via thorough washing to give the permanent template grooves. They show favored affinity to the template molecule compared to other molecules, and this property is the basic driving force for such diverse application of this techniques. Such techniques have been increasingly employed in a wide scope of applications such as chromatography, sample pretreatment, purification, catalysts, sensors, and drug delivery, etc., mostly in bioanalytical areas. A major part of them is related to development of new stationary phases and their application in chromatography and sample pretreatment. Embodiments of molecular imprinted polymer materials have been carried out in a variety of forms such as irregularly ground particles, regular spherical particles, nanoparticles, monoliths in a stainless steel or capillary column, open tubular layers in capillaries, surface attached thin layers, membranes, and composites, etc. There have been numerous review articles on molecular imprinted polymer issues. In this special review, the reviews in recent ca. 10 years will be categorized into several subgroups according to specified topics in separation science, and each review in each subgroup will be introduced in the order of date with brief summaries and comments on new developments and different scopes of prospects. Brief summaries of each categories and conclusive future perspectives are also given.

425 citations