scispace - formally typeset
Search or ask a question
Author

Kristine Spekkens

Other affiliations: Queen's University, Randolph–Macon College, Cornell University  ...read more
Bio: Kristine Spekkens is an academic researcher from Royal Military College of Canada. The author has contributed to research in topics: Galaxy & Dwarf galaxy. The author has an hindex of 48, co-authored 191 publications receiving 7462 citations. Previous affiliations of Kristine Spekkens include Queen's University & Randolph–Macon College.


Papers
More filters
Journal ArticleDOI
TL;DR: The ALFALFA project as discussed by the authors uses a two-pass, minimum intrusion, drift scan observing technique that samples the same region of sky at two separate epochs to aid in the discrimination of cosmic signals from noise and terrestrial interference.
Abstract: The recently initiated Arecibo Legacy Fast ALFA (ALFALFA) survey aims to map ~7000 deg2 of the high Galactic latitude sky visible from Arecibo, providing a H I line spectral database covering the redshift range between -1600 and 18,000 km (s-1) with ~5 km s(-1) resolution. Exploiting Arecibo's large collecting area and small beam size, ALFALFA is specifically designed to probe the faint end of the H I mass function in the local universe and will provide a census of H I in the surveyed sky area to faint flux limits, making it especially useful in synergy with wide-area surveys conducted at other wavelengths. ALFALFA will also provide the basis for studies of the dynamics of galaxies within the Local Supercluster and nearby superclusters, allow measurement of the H I diameter function, and enable a first wide-area blind search for local H I tidal features, H I absorbers at z < 0.06, and OH megamasers in the redshift range 0.16 < z < 0.25. Although completion of the survey will require some 5 years, public access to the ALFALFA data and data products will be provided in a timely manner, thus allowing its application for studies beyond those targeted by the ALFALFA collaboration. ALFALFA adopts a two-pass, minimum intrusion, drift scan observing technique that samples the same region of sky at two separate epochs to aid in the discrimination of cosmic signals from noise and terrestrial interference. Survey simulations, which take into account large-scale structure in the mass distribution and incorporate experience with the ALFA system gained from tests conducted during its commissioning phase, suggest that ALFALFA will detect on the order of 20,000 extragalactic H I line sources out to z ~ 0.06, including several hundred with H I masses M(HI) < 10(7.5) M ?.

768 citations

Journal ArticleDOI
TL;DR: The α.40 catalog of 21 cm H I line sources extracted from the Arecibo Legacy Fast arecibo L-band Feed Array (ALFALFA) survey over ~2800 deg^2 of sky is presented in this article.
Abstract: We present a current catalog of 21 cm H I line sources extracted from the Arecibo Legacy Fast Arecibo L-band Feed Array (ALFALFA) survey over ~2800 deg^2 of sky: the α.40 catalog. Covering 40% of the final survey area, the α.40 catalog contains 15,855 sources in the regions 07^h30^m < R.A. < 16^h30^m, +04° < decl. <+16°, and +24° < decl. <+28° and 22^h < R.A. < 03^h, +14° < decl. <+16°, and +24° < decl. < + 32°. Of those, 15,041 are certainly extragalactic, yielding a source density of 5.3 galaxies per deg^2, a factor of 29 improvement over the catalog extracted from the H I Parkes All-Sky Survey. In addition to the source centroid positions, H I line flux densities, recessional velocities, and line widths, the catalog includes the coordinates of the most probable optical counterpart of each H I line detection, and a separate compilation provides a cross-match to identifications given in the photometric and spectroscopic catalogs associated with the Sloan Digital Sky Survey Data Release 7. Fewer than 2% of the extragalactic H I line sources cannot be identified with a feasible optical counterpart; some of those may be rare OH megamasers at 0.16 < z < 0.25. A detailed analysis is presented of the completeness, width-dependent sensitivity function and bias inherent of the α.40 catalog. The impact of survey selection, distance errors, current volume coverage, and local large-scale structure on the derivation of the H I mass function is assessed. While α.40 does not yet provide a completely representative sampling of cosmological volume, derivations of the H I mass function using future data releases from ALFALFA will further improve both statistical and systematic uncertainties.

741 citations

Journal ArticleDOI
TL;DR: The alpha.40 catalog of 21 cm HI line sources extracted from the ALFALFA survey over ~2800 square degrees of sky is presented in this paper, which includes the coordinates of the most probable optical counterpart of each HI line detection, and a separate compilation provides a crossmatch to identifications given in the photometric and spectroscopic catalogs associated with the SDS data.
Abstract: We present a current catalog of 21 cm HI line sources extracted from the Arecibo Legacy Fast Arecibo L-band Feed Array (ALFALFA) survey over ~2800 square degrees of sky: the alpha.40 catalog. Covering 40% of the final survey area, the alpha.40 catalog contains 15855 sources in the regions 07h30m < R.A. < 16h30m, +04 deg < Dec. < +16 deg and +24 deg < Dec. < +28 deg and 22h < R.A. < 03h, +14 deg < Dec. < +16 deg and +24 deg < Dec. < +32 deg. Of those, 15041 are certainly extragalactic, yielding a source density of 5.3 galaxies per square degree, a factor of 29 improvement over the catalog extracted from the HI Parkes All Sky Survey. In addition to the source centroid positions, HI line flux densities, recessional velocities and line widths, the catalog includes the coordinates of the most probable optical counterpart of each HI line detection, and a separate compilation provides a crossmatch to identifications given in the photometric and spectroscopic catalogs associated with the Sloan Digital Sky Survey Data Release 7. Fewer than 2% of the extragalactic HI line sources cannot be identified with a feasible optical counterpart; some of those may be rare OH megamasers at 0.16 < z < 0.25. A detailed analysis is presented of the completeness, width dependent sensitivity function and bias inherent in the current alpha.40 catalog. The impact of survey selection, distance errors, current volume coverage and local large scale structure on the derivation of the HI mass function is assessed. While alpha.40 does not yet provide a completely representative sampling of cosmological volume, derivations of the HI mass function using future data releases from ALFALFA will further improve both statistical and systematic uncertainties.

686 citations

Journal ArticleDOI
TL;DR: In this paper, the authors describe the selection procedure and statistical properties of the galaxy sample used by the Calar Alto Legacy Integral Field Area (CALIFA) survey, a public legacy survey of 600 galaxies using integral field spectroscopy.
Abstract: We describe and discuss the selection procedure and statistical properties of the galaxy sample used by the Calar Alto Legacy Integral Field Area (CALIFA) survey, a public legacy survey of 600 galaxies using integral field spectroscopy. The CALIFA "mother sample" was selected from the Sloan Digital Sky Survey (SDSS) DR7 photometric catalogue to include all galaxies with an r-band isophotal major axis between 45 '' and 79 : 2 '' and with a redshift 0 : 005 M-r > -23 : 1 and over a stellar mass range between 10(9.7) and 10(11.4) M-circle dot. In particular, within these ranges, the diameter selection does not lead to any significant bias against - or in favour of - intrinsically large or small galaxies. Only below luminosities of M-r = -19 (or stellar masses < 10(9.7) M-circle dot) is there a prevalence of galaxies with larger isophotal sizes, especially of nearly edge-on late-type galaxies, but such galaxies form < 10% of the full sample. We estimate volume-corrected distribution functions in luminosities and sizes and show that these are statistically fully compatible with estimates from the full SDSS when accounting for large-scale structure. For full characterization of the sample, we also present a number of value-added quantities determined for the galaxies in the CALIFA sample. These include consistent multi-band photometry based on growth curve analyses; stellar masses; distances and quantities derived from these; morphological classifications; and an overview of available multi-wavelength photometric measurements. We also explore different ways of characterizing the environments of CALIFA galaxies, finding that the sample covers environmental conditions from the field to genuine clusters. We finally consider the expected incidence of active galactic nuclei among CALIFA galaxies given the existing pre-CALIFA data, finding that the final observed CALIFA sample will contain approximately 30 Sey2 galaxies.

258 citations

Journal ArticleDOI
TL;DR: The second public data release (DR2) of the Calar Alto Legacy Integral Field Area (CALIFA) survey as discussed by the authors contains over 1.5 million spectra.
Abstract: This paper describes the Second Public Data Release (DR2) of the Calar Alto Legacy Integral Field Area (CALIFA) survey. The data for 200 objects are made public, including the 100 galaxies of the First Public Data Release (DR1). Data were obtained with the integral-field spectrograph PMAS /PPak mounted on the 3.5 m telescope at the Calar Alto observatory. Two different spectral setups are available for each galaxy, (i) a low-resolution V500 setup covering the wavelength range 3745-7500 A with a spectral resolution of 6.0 A (FWHM); and (ii) a medium-resolution V1200 setup covering the wavelength range 3650-4840 A with a spectral resolution of 2.3 A (FWHM). The sample covers a redshift range between 0.005 and 0.03, with a wide range of properties in the color-magnitude diagram, stellar mass, ionization conditions, and morphological types. All the cubes in the data release were reduced with the latest pipeline, which includes improved spectrophotometric calibration, spatial registration, and spatial resolution. The spectrophotometric calibration is better than 6% and the median spatial resolution is 2´´ 4. In total, the second data release contains over 1.5 million spectra.

218 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors review progress over the past decade in observations of large-scale star formation, with a focus on the interface between extragalactic and Galactic studies.
Abstract: We review progress over the past decade in observations of large-scale star formation, with a focus on the interface between extragalactic and Galactic studies. Methods of measuring gas contents and star-formation rates are discussed, and updated prescriptions for calculating star-formation rates are provided. We review relations between star formation and gas on scales ranging from entire galaxies to individual molecular clouds.

2,525 citations

01 Jan 2005
TL;DR: The Monthly Notices as mentioned in this paper is one of the three largest general primary astronomical research publications in the world, published by the Royal Astronomical Society (RAE), and it is the most widely cited journal in astronomy.
Abstract: Monthly Notices is one of the three largest general primary astronomical research publications. It is an international journal, published by the Royal Astronomical Society. This article 1 describes its publication policy and practice.

2,091 citations

01 Jan 1985
TL;DR: In this article, a reexamination is conducted of the formation of dwarf, diffuse, metal-poor galaxies due to supernova-driven winds, in view of data on the systematic properties of dwarfs in the Local Group and Virgo Cluster.
Abstract: A reexamination is conducted of the formation of dwarf, diffuse, metal-poor galaxies due to supernova-driven winds, in view of data on the systematic properties of dwarfs in the Local Group and Virgo Cluster. The critical condition for global gas loss as a result of the first burst of star formation is that the virial velocity lie below an approximately 100 km/sec critical value. This leads, as observed, to two distinct classes of galaxies, encompassing the diffuse dwarfs, which primarily originate from typical density perturbations, and the normal, brighter galaxies, including compact dwarfs, which can originate only from the highest density peaks. This furnishes a statistical biasing mechanism for the preferential formation of bright galaxies in denser regions, enhancing high surface brightness galaxies' clustering relative to the diffusive dwarfs.

1,253 citations

Journal ArticleDOI
TL;DR: MaNGA (Mapping Nearby Galaxies at Apache Point Observatory) as mentioned in this paper employs dithered observations with 17 fiber-bundle integral field units that vary in diameter from 12'' (19 fibers) to 32'' (127 fibers).
Abstract: We present an overview of a new integral field spectroscopic survey called MaNGA (Mapping Nearby Galaxies at Apache Point Observatory), one of three core programs in the fourth-generation Sloan Digital Sky Survey (SDSS-IV) that began on 2014 July 1. MaNGA will investigate the internal kinematic structure and composition of gas and stars in an unprecedented sample of 10,000 nearby galaxies. We summarize essential characteristics of the instrument and survey design in the context of MaNGA's key science goals and present prototype observations to demonstrate MaNGA's scientific potential. MaNGA employs dithered observations with 17 fiber-bundle integral field units that vary in diameter from 12'' (19 fibers) to 32'' (127 fibers). Two dual-channel spectrographs provide simultaneous wavelength coverage over 3600-10300 A at R ~ 2000. With a typical integration time of 3 hr, MaNGA reaches a target r-band signal-to-noise ratio of 4-8 (A–1 per 2'' fiber) at 23 AB mag arcsec–2, which is typical for the outskirts of MaNGA galaxies. Targets are selected with M * 109 M ☉ using SDSS-I redshifts and i-band luminosity to achieve uniform radial coverage in terms of the effective radius, an approximately flat distribution in stellar mass, and a sample spanning a wide range of environments. Analysis of our prototype observations demonstrates MaNGA's ability to probe gas ionization, shed light on recent star formation and quenching, enable dynamical modeling, decompose constituent components, and map the composition of stellar populations. MaNGA's spatially resolved spectra will enable an unprecedented study of the astrophysics of nearby galaxies in the coming 6 yr.

1,104 citations