scispace - formally typeset
Search or ask a question
Author

Kristopher O. Davis

Bio: Kristopher O. Davis is an academic researcher from University of Central Florida. The author has contributed to research in topics: Silicon & Crystalline silicon. The author has an hindex of 15, co-authored 116 publications receiving 986 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: Thin TiO2 films are demonstrated to be an excellent electron-selective contact for crystalline silicon solar cells featuring a full-areaTiO2 -based electron- selective contact.
Abstract: Thin TiO2 films are demonstrated to be an excellent electron-selective contact for crystalline silicon solar cells. An efficiency of 21.6% is achieved for crystalline silicon solar cells featuring a full-area TiO2 -based electron-selective contact.

286 citations

Journal ArticleDOI
TL;DR: In this paper, a biomimetic omnidirectional photon management scheme for ultrathin flexible graphene silicon Schottky junction solar cell is presented, which mimics the two essential light trapping mechanisms of a leaf.

84 citations

Journal ArticleDOI
TL;DR: In this paper, a literature review of relevant measurement techniques aimed at reducing or eliminating the probability of such failures occurring is presented along with an assessment of potential gaps wherein the PV community could benefit from new research and demonstration efforts.
Abstract: This article is the second article in a three-part series dedicated to reviewing each process step in crystalline silicon (c-Si) photovoltaic (PV) module manufacturing process: feedstock and wafering, cell fabrication, and module manufacturing. The goal of these papers is to identify relevant metrology techniques that can be utilized to improve the quality and durability of the final product. The focus of this article is on the cell fabrication process. In this review, the fabrication of c-Si PV cells is divided into four steps: (1) wet chemical processes; (2) emitter formation; (3) anti-reflection coating (ARC) and passivation deposition; and (4) metallization. Each of these processing steps can impact the final reliability and durability of PV modules deployed in the field, and here the failure modes and degradation mechanisms induced during cell manufacturing are explored. Additionally, a literature review of relevant measurement techniques aimed at reducing or eliminating the probability of such failures occurring is presented along with an assessment of potential gaps wherein the PV community could benefit from new research and demonstration efforts.

73 citations

Journal ArticleDOI
TL;DR: In this paper, ZnO nanorods were grown on RGO and reduced graphene oxide (RGO) films with seed layers by using simple hydrothermal method, and the optical and structural properties of the nanorod were systematically studied by scanning electron microscopy (SEM), X-ray diffraction (XRD) and ultraviolet-visible spectroscopy.

63 citations

Journal ArticleDOI
TL;DR: In this paper, the authors investigate different factors that influence the accuracy of this measurement, using both simulation and experimental methods, including strip width, edge shunting, current flow through the intermediate unprobed fingers, non-uniform contact resistance, and nonuniform sheet resistance.

55 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
TL;DR: In this paper, the degradation rates of flat-plate terrestrial modules and systems reported in published literature from field testing throughout the last 40 years have been analyzed, showing a median value of 0·5%/year.
Abstract: As photovoltaic penetration of the power grid increases, accurate predictions of return on investment require accurate prediction of decreased power output over time. Degradation rates must be known in order to predict power delivery. This article reviews degradation rates of flat-plate terrestrial modules and systems reported in published literature from field testing throughout the last 40 years. Nearly 2000 degradation rates, measured on individual modules or entire systems, have been assembled from the literature, showing a median value of 0·5%/year. The review consists of three parts: a brief historical outline, an analytical summary of degradation rates, and a detailed bibliography partitioned by technology. Copyright © 2011 John Wiley & Sons, Ltd.

1,202 citations

Journal ArticleDOI

674 citations

Journal Article
TL;DR: The design and fabrication of a three-dimensional in vitro system to model vascular stenosis so that specific cellular interactions and responses to hemodynamic stimuli can be investigated and serve as an in vitro 3D culture system to investigate vascular pathogenesis.
Abstract: Vascular stenosis triggers adaptive cellular responses that induce adverse remodeling, which can progress to partial or complete vessel occlusion. Despite its severity, cellular interactions and biophysical cues that regulate pathological progression are poorly understood. We report the design and fabrication of a three-dimensional in vitro system to model vascular stenosis so that specific cellular interactions and responses to hemodynamic stimuli can be investigated. Tubular cellularized constructs (cytotubes) were produced using a collagen casting system to generate a stenotic arterial model. Fabrication methods were developed to create cytotubes containing co-cultured vascular cells, where cell viability, distribution, morphology, and contraction were examined (Figure). Fibroblasts, bone marrow primary cells, smooth muscle cells (SMCs), and endothelial cells (ECs) remained viable during culture and developed locationand time-dependent morphologies. We found cytotube contraction to depend on cellular composition, where SMC-EC co-cultures adopted intermediate contractile phenotypes between SMCand EC-only cytotubes. Our fabrication approach and resulting artery model can serve as an in vitro 3D culture system to investigate vascular pathogenesis.

570 citations

Journal ArticleDOI
TL;DR: De Wolf et al. as mentioned in this paper reviewed the fundamental physical processes governing contact formation in crystalline silicon (c-Si) and identified the role passivating contacts play in increasing c-Si solar cell efficiencies beyond the limitations imposed by heavy doping and direct metallization.
Abstract: The global photovoltaic (PV) market is dominated by crystalline silicon (c-Si) based technologies with heavily doped, directly metallized contacts. Recombination of photo-generated electrons and holes at the contact regions is increasingly constraining the power conversion efficiencies of these devices as other performance-limiting energy losses are overcome. To move forward, c-Si PV technologies must implement alternative contacting approaches. Passivating contacts, which incorporate thin films within the contact structure that simultaneously supress recombination and promote charge-carrier selectivity, are a promising next step for the mainstream c-Si PV industry. In this work, we review the fundamental physical processes governing contact formation in c-Si. In doing so we identify the role passivating contacts play in increasing c-Si solar cell efficiencies beyond the limitations imposed by heavy doping and direct metallization. Strategies towards the implementation of passivating contacts in industrial environments are discussed. The development of passivating contacts holds great potential for enhancing the power conversion efficiency of silicon photovoltaics. Here, De Wolf et al. review recent advances in material design and device architecture, and discuss technical challenges to industrial fabrication.

326 citations