scispace - formally typeset
Search or ask a question
Author

Krisztián Bene

Bio: Krisztián Bene is an academic researcher from University of Debrecen. The author has contributed to research in topics: T cell & Cytokine secretion. The author has an hindex of 4, co-authored 8 publications receiving 105 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: It is demonstrated that selected commensal bacterial strains are able to drive strong effector immune responses by moDCs, while in the presence of ATRA, they support the development of both tolerogenic and inflammatory moDC in a RARα-dependent manner.
Abstract: Dendritic cells (DCs) are considered as the main coordinators of both mucosal and systemic immune responses thus playing a determining role in shaping the outcome of effector cell responses. However, it is still uncovered how primary human monocyte-derived DC populations (moDC) drive the polarization of helper T (Th) cells in the presence of commensal bacteria harboring unique immunomodulatory properties. Furthermore, the individual members of the gut microbiota have the potential to modulate the outcome of immune responses and shape the immunogenicity of differentiating moDCs via the activation of retinoic-acid receptor alpha (RARα). Here we report that moDCs are able to mediate robust Th1 and Th17 responses upon stimulation by Escherichia coli Schaedler or Morganella morganii, while the probiotic Bacillus subtilis strain limits this effect. Moreover, physiological concentrations of all-trans retinoic-acid (ATRA) are able to re-program the differentiation of moDCs resulting in altered gene expression profiles of the master transcription factors RARα and interferon-regulatory factor (IRF) 4, and concomitantly regulate the cell surface expression levels of CD1 proteins and also the mucosa-associated CD103 integrin to different directions. It was also demonstrated that the ATRA-conditioned moDCs exhibited enhanced pro-inflammatory cytokine secretion, while reduced their co-stimulatory and antigen presenting capacity thus reducing Th1 and presenting undetectable Th17 type responses against the tested microbiota strains. Importantly, these regulatory circuits could be prevented by the selective inhibition of RARα functionality. These results altogether demonstrate that selected commensal bacterial strains are able to drive strong effector immune responses by moDCs, while in the presence of ATRA they support the development of both tolerogenic and inflammatory moDC in a RARα dependent manner.

46 citations

Journal ArticleDOI
TL;DR: Data suggest that mucus adhesins expressed at the cell surface of L. reuteri strains may exert immunoregulatory effects in the gut through modulating the Th1-promoting capacity of DCs upon interaction with C-type lectins.
Abstract: The vertebrate gut symbiont Lactobacillus reuteri exhibits strain-specific adhesion and health-promoting properties. Here, we investigated the role of the mucus adhesins, CmbA and MUB upon interaction with the L. reuteri strains ATCC PTA 6475 and ATCC 53608 in human monocyte-derived DCs (moDCs). We showed that mucus adhesins increased the capacity of L. reuteri strains to interact with moDCs and promoted phagocytosis. Our data also suggest that mucus adhesins mediate anti- and pro-inflammatory effects by the induction of interleukin-10 (IL-10), tumor necrosis factor alpha (TNF-α), IL-1s, IL-6, and IL-12 cytokines. L. reuteri ATCC PTA 6475 and ATCC 53608 strains were exclusively able to induce moDC-mediated Th1 and Th17 immune responses. We further showed that purified MUB activates moDCs and induces Th1 polarized immune responses associated with increased IFNγ production. MUB appeared to mediate these effects via binding to C-type lectin receptors (CLRs), as shown using cell reporter assays. Blocking moDCs with antibodies against dendritic cell-specific intercellular adhesion molecule 3-grabbing non-integrin (DC-SIGN) or Dectin-2 did not affect the uptake of the MUB-expressing strain, but reduced the production of TNF-α and IL-6 by moDCs significantly in line with the Th1 polarizing capacity of moDCs. The direct interaction between MUB and CLRs was further confirmed by force spectroscopy. Taken together these data suggest that mucus adhesins expressed at the cell surface of L. reuteri strains may exert immunoregulatory effects in the gut through modulating the Th1-promoting capacity of DCs upon interaction with C-type lectins.

43 citations

Journal ArticleDOI
TL;DR: The results demonstrate the subset‐specific activation of RLR and the underlying mechanisms behind its cytokine secretion profile and identify CD1a+ moDCs as an inflammatory subset with specialized functional activities.
Abstract: Cytosolic RIG-I-like helicases (RLR) are PRRs involved in type I IFN production and antiviral immunity. This study focuses to the comparison of the expression, function, and signaling cascades associated to RLR in the previously identified CD14(-)DC-SIGN(+)PPARγ(low)CD1a(+) and CD14(low)DC-SIGN(+)PPARγ(high)CD1a(-) human moDC subsets. Our results revealed that the expression of RLR genes and proteins as well as the activity of the coupled signaling pathways are significantly higher in the CD1a(+) subset than in its phenotypically and functionally distinct counterpart. Specific activation of RLR in moDCs by poly(I:C) or influenza virus was shown to induce the secretion of IFN-β via IRF3, whereas induction of proinflammatory cytokine responses were predominantly controlled by TLR3. The requirement of RLR-mediated signaling in CD1a(+) moDCs for priming naive CD8(+) T lymphocytes and inducing influenza virus-specific cellular immune responses was confirmed by RIG-I/MDA5 silencing, which abrogated these functions. Our results demonstrate the subset-specific activation of RLR and the underlying mechanisms behind its cytokine secretion profile and identify CD1a(+) moDCs as an inflammatory subset with specialized functional activities. We also provide evidence that this migratory DC subset can be detected in human tonsil and reactive LNs.

29 citations

Journal ArticleDOI
TL;DR: Simultaneous application of the blockers for each channel along with rapamycin was the most effective, indicating synergy among the various activation pathways, and upon increasing the extent of mitogenic stimulation the anti-proliferative effect of the ion channel blockers diminished.

11 citations

Journal ArticleDOI
TL;DR: It is demonstrated for the first time that mTOR positively regulates the RLR-mediated antiviral activity of human DCs and suppresses effectively the T cell stimulatory capacity of DCs.
Abstract: To detect replicating viruses, dendritic cells (DCs) utilize cytoplasmic retinoic acid inducible gene-(RIG) I-like receptors (RLRs), which play an essential role in the subsequent activation of antiviral immune responses. In this study, we aimed to explore the role of the mammalian target of rapamycin (mTOR) in the regulation of RLR-triggered effector functions of human monocyte-derived DCs (moDCs) and plasmacytoid DCs (pDCs). Our results show that RLR stimulation increased the phosphorylation of the mTOR complex (mTORC) 1 and mTORC2 downstream targets p70S6 kinase and Akt, respectively, and this process was prevented by the mTORC1 inhibitor rapamycin as well as the dual mTORC1/C2 kinase inhibitor AZD8055 in both DC subtypes. Furthermore, inhibition of mTOR in moDCs impaired the RLR stimulation-triggered glycolytic switch, which was reflected by the inhibition of lactate production and downregulation of key glycolytic genes. Blockade of mTOR diminished the ability of RLR-stimulated moDCs and pDCs to secret type I interferons (IFNs) and pro-inflammatory cytokines, while it did not affect the phenotype of DCs. We also found that mTOR blockade decreased the phosphorylation of Tank-binding kinase 1 (TBK1), which mediates RLR-driven cytokine production. In addition, rapamycin abrogated the ability of both DC subtypes to promote the proliferation and differentiation of IFN-y and Granzyme B producing CD8 + T cells. Interestingly, AZD8055 was much weaker in its ability to decrease the T cell proliferation capacity of DCs and was unable to inhibit the DC-triggered production of IFN-y and Granyzme B by CD8 + T cells. Here we demonstrated for the first time that mTOR positively regulates the RLR-mediated antiviral activity of human DCs. Further, we show that only selective inhibition of mTORC1 but not dual mTORC1/C2 blockade suppresses effectively the T cell stimulatory capacity of DCs that should be considered in the development of new generation mTOR inhibitors and in the improvement of DC-based vaccines.

9 citations


Cited by
More filters
01 Jan 2010
TL;DR: The data demonstrate a role for CD141+ DCs in the induction of cytotoxic T lymphocyte responses and suggest that they may be the most relevant targets for vaccination against cancers, viruses, and other pathogens.
Abstract: The characterization of human dendritic cell (DC) subsets is essential for the design of new vaccines. We report the first detailed functional analysis of the human CD141(+) DC subset. CD141(+) DCs are found in human lymph nodes, bone marrow, tonsil, and blood, and the latter proved to be the best source of highly purified cells for functional analysis. They are characterized by high expression of toll-like receptor 3, production of IL-12p70 and IFN-beta, and superior capacity to induce T helper 1 cell responses, when compared with the more commonly studied CD1c(+) DC subset. Polyinosine-polycytidylic acid (poly I:C)-activated CD141(+) DCs have a superior capacity to cross-present soluble protein antigen (Ag) to CD8(+) cytotoxic T lymphocytes than poly I:C-activated CD1c(+) DCs. Importantly, CD141(+) DCs, but not CD1c(+) DCs, were endowed with the capacity to cross-present viral Ag after their uptake of necrotic virus-infected cells. These findings establish the CD141(+) DC subset as an important functionally distinct human DC subtype with characteristics similar to those of the mouse CD8 alpha(+) DC subset. The data demonstrate a role for CD141(+) DCs in the induction of cytotoxic T lymphocyte responses and suggest that they may be the most relevant targets for vaccination against cancers, viruses, and other pathogens.

859 citations

Journal ArticleDOI
TL;DR: Inflammatory diseases, including those located in the gut as well as in remote tissues, may be ameliorated by increasing the colonization of L. reuteri, which may be an attractive preventive and/or therapeutic avenue against inflammatory diseases.
Abstract: Lactobacillus reuteri (L. reuteri) is a well-studied probiotic bacterium that can colonize a large number of mammals. In humans, L. reuteri is found in different body sites, including the gastrointestinal tract, urinary tract, skin, and breast milk. The abundance of L. reuteri varies among different individuals. Several beneficial effects of L. reuteri have been noted. First, L. reuteri can produce antimicrobial molecules, such as organic acids, ethanol, and reuterin. Due to its antimicrobial activity, L. reuteri is able to inhibit the colonization of pathogenic microbes and remodel the commensal microbiota composition in the host. Second, L. reuteri can benefit the host immune system. For instance, some L. reuteri strains can reduce the production of pro-inflammatory cytokines while promoting regulatory T cell development and function. Third, bearing the ability to strengthen the intestinal barrier, the colonization of L. reuteri may decrease the microbial translocation from the gut lumen to the tissues. Microbial translocation across the intestinal epithelium has been hypothesized as an initiator of inflammation. Therefore, inflammatory diseases, including those located in the gut as well as in remote tissues, may be ameliorated by increasing the colonization of L. reuteri. Notably, the decrease in the abundance of L. reuteri in humans in the past decades is correlated with an increase in the incidences of inflammatory diseases over the same period of time. Direct supplementation or prebiotic modulation of L. reuteri may be an attractive preventive and/or therapeutic avenue against inflammatory diseases.

382 citations

Journal ArticleDOI
TL;DR: How the various PRR families are activated and can influence injury and repair processes following CNS injury is discussed.

337 citations

Journal ArticleDOI
TL;DR: This review is to describe how APCs interact with and influence the activation of T cells to maintain innate immunity during exposure to microbial infection and malignant cells.
Abstract: Innate immunity is maintained in part by antigen presenting cells (APCs) including dendritic cells, macrophages, and B cells. APCs interact with T cells to link innate and adaptive immune responses. By displaying bacterial and tumorigenic antigens on their surface via major histocompatibility complexes, APCs can directly influence the differentiation of T cells. Likewise, T cell activation, differentiation, and effector functions are modulated by APCs utilizing multiple mechanisms. The objective of this review is to describe how APCs interact with and influence the activation of T cells to maintain innate immunity during exposure to microbial infection and malignant cells. How bacteria and cancer cells take advantage of some of these interactions for their own benefit will also be discussed. While this review will cover a broad range of topics, a general focus will be held around pathogens, cancers, and interactions that typically occur within the gastrointestinal tract.

170 citations

Journal ArticleDOI
TL;DR: Results confirm that IK channels in red blood cells, T lymphocytes, and parotid acinar cells are indeed encoded by the Kcnn4 gene, and the role of these channels in water movement and the subsequent volume changes in redBlood cells and T lymphocyte cells is confirmed.

169 citations