scispace - formally typeset
Search or ask a question
Author

Krisztian Flautner

Other affiliations: Intel
Bio: Krisztian Flautner is an academic researcher from University of Michigan. The author has contributed to research in topics: Dynamic voltage scaling & Clock rate. The author has an hindex of 41, co-authored 97 publications receiving 9373 citations. Previous affiliations of Krisztian Flautner include Intel.


Papers
More filters
Journal ArticleDOI
TL;DR: The other source of power dissipation in microprocessors, dynamic power, arises from the repeated capacitance charge and discharge on the output of the hundreds of millions of gates in today's chips.
Abstract: Off-state leakage is static power, current that leaks through transistors even when they are turned off. The other source of power dissipation in today's microprocessors, dynamic power, arises from the repeated capacitance charge and discharge on the output of the hundreds of millions of gates in today's chips. Until recently, only dynamic power has been a significant source of power consumption, and Moore's law helped control it. However, power consumption has now become a primary microprocessor design constraint; one that researchers in both industry and academia will struggle to overcome in the next few years. Microprocessor design has traditionally focused on dynamic power consumption as a limiting factor in system integration. As feature sizes shrink below 0.1 micron, static power is posing new low-power design challenges.

1,233 citations

Proceedings ArticleDOI
03 Dec 2003
TL;DR: A solution by which the circuit can be operated even below the ‘critical’ voltage, so that no margins are required and thus more energy can be saved.
Abstract: With increasing clock frequencies and silicon integration, power aware computing has become a critical concern in the design of embedded processors and systems-on-chip. One of the more effective and widely used methods for power-aware computing is dynamic voltage scaling (DVS). In order to obtain the maximum power savings from DVS, it is essential to scale the supply voltage as low as possible while ensuring correct operation of the processor. The critical voltage is chosen such that under a worst-case scenario of process and environmental variations, the processor always operates correctly. However, this approach leads to a very conservative supply voltage since such a worst-case combination of different variabilities is very rare. In this paper, we propose a new approach to DVS, called Razor, based on dynamic detection and correction of circuit timing errors. The key idea of Razor is to tune the supply voltage by monitoring the error rate during circuit operation, thereby eliminating the need for voltage margins and exploiting the data dependence of circuit delay. A Razor flip-flop is introduced that double-samples pipeline stage values, once with a fast clock and again with a time-borrowing delayed clock. A metastability-tolerant comparator then validates latch values sampled with the fast clock. In the event of timing error, a modified pipeline mispeculation recovery mechanism restores correct program state. A prototype Razor pipeline was designed in a 0.18 /spl mu/m technology and was analyzed. Razor energy overhead during normal operation is limited to 3.1%. Analyses of a full-custom multiplier and a SPICE-level Kogge-Stone adder model reveal that substantial energy savings are possible for these devices (up to 64.2%) with little impact on performance due to error recovery (less than 3%).

1,137 citations

Journal ArticleDOI
01 May 2002
TL;DR: It is argued that the use of drowsy caches can simplify the design and control of low-leakage caches, and avoid the need to completely turn off selected cache lines and lose their state.
Abstract: On-chip caches represent a sizable fraction of the total power consumption of microprocessors. Although large caches can significantly improve performance, they have the potential to increase power consumption. As feature sizes shrink, the dominant component of this power loss will be leakage. However, during a fixed period of time the activity in a cache is only centered on a small subset of the lines. This behavior can be exploited to cut the leakage power of large caches by putting the cold cache lines into a state preserving, low-power drowsy mode. Moving lines into and out of drowsy state incurs a slight performance loss. In this paper we investigate policies and circuit techniques for implementing drowsy caches. We show that with simple architectural techniques, about 80%-90% of the cache lines can be maintained in a drowsy state without affecting performance by more than 1%. According to our projections, in a 0.07um CMOS process, drowsy caches will be able to reduce the total energy (static and dynamic) consumed in the caches by 50%-75%. We also argue that the use of drowsy caches can simplify the design and control of low-leakage caches, and avoid the need to completely turn off selected cache lines and lose their state.

823 citations

Proceedings ArticleDOI
10 Nov 2002
TL;DR: In this paper, the authors show how the simultaneous use of adaptive body biasing (ABB) and dynamic voltage scaling (DVS) can be used to reduce power in high-performance processors.
Abstract: Dynamic voltage scaling (DVS) reduces the power consumption of processors when peak performance is unnecessary. However, the achievable power savings by DVS alone is becoming limited as leakage power increases. In this paper, we show how the simultaneous use of adaptive body biasing (ABB) and DVS can be used to reduce power in high-performance processors. Analytical models of the leakage current, dynamic power, and frequency as functions of supply voltage and body bias are derived and verified with SPICE simulation. We then show how to determine the correct trade-off between supply voltage and body bias for a given clock frequency and duration of operation. The usefulness of our approach is evaluated on real workloads obtained using real-time monitoring of processor utilization for four applications. The results demonstrate that application of simultaneous DVS and ABB results in an average energy reduction of 48% over DVS alone.

497 citations

Proceedings ArticleDOI
07 Jun 2004
TL;DR: It is shown that extending the voltage range below 1/2 Vdd will improve the energy efficiency for most processor designs, while extending this range to subthreshold operation is beneficial only for very specific applications and that operation deep in the subth threshold voltage range is never energy-efficient.
Abstract: Dynamic voltage scaling (DVS) is a popular approach for energy reduction of integrated circuits. Current processors that use DVS typically have an operating voltage range from full to half of the maximum Vdd. However, it is possible to construct designs that operate over a much larger voltage range: from full Vdd to subthreshold voltages. This possibility raises the question of whether a larger voltage range improves the energy efficiency of DVS. First, from a theoretical point of view, we show that for subthreshold supply voltages leakage energy becomes dominant, making "just in time completion" energy inefficient. We derive an analytical model for the minimum energy optimal voltage and study its trends with technology scaling. Second, we use the proposed model to study the workload activity of an actual processor and analyze the energy efficiency as a function of the lower limit of voltage scaling. Based on this study, we show that extending the voltage range below 1/2 Vdd will improve the energy efficiency for most processor designs, while extending this range to subthreshold operation is beneficial only for very specific applications. Finally, we show that operation deep in the subthreshold voltage range is never energy-efficient.

431 citations


Cited by
More filters
Journal ArticleDOI
29 Apr 2003
TL;DR: Channel engineering techniques including retrograde well and halo doping are explained as means to manage short-channel effects for continuous scaling of CMOS devices and different circuit techniques to reduce the leakage power consumption are explored.
Abstract: High leakage current in deep-submicrometer regimes is becoming a significant contributor to power dissipation of CMOS circuits as threshold voltage, channel length, and gate oxide thickness are reduced. Consequently, the identification and modeling of different leakage components is very important for estimation and reduction of leakage power, especially for low-power applications. This paper reviews various transistor intrinsic leakage mechanisms, including weak inversion, drain-induced barrier lowering, gate-induced drain leakage, and gate oxide tunneling. Channel engineering techniques including retrograde well and halo doping are explained as means to manage short-channel effects for continuous scaling of CMOS devices. Finally, the paper explores different circuit techniques to reduce the leakage power consumption.

2,281 citations

Journal ArticleDOI
Shekhar Borkar1
TL;DR: This article discusses effects of variability in transistor performance and proposes microarchitecture, circuit, and testing research that focuses on designing with many unreliable components (transistors) to yield reliable system designs.
Abstract: As technology scales, variability in transistor performance continues to increase, making transistors less and less reliable. This creates several challenges in building reliable systems, from the unpredictability of delay to increasing leakage current. Finding solutions to these challenges require a concerted effort on the part of all the players in a system design. This article discusses these effects and proposes microarchitecture, circuit, and testing research that focuses on designing with many unreliable components (transistors) to yield reliable system designs.

1,421 citations

Proceedings ArticleDOI
21 Oct 2001
TL;DR: This paper presents a class of novel algorithms that modify the OS's real-time scheduler and task management service to provide significant energy savings while maintaining real- time deadline guarantees, and shows that these RT-DVS algorithms closely approach the theoretical lower bound on energy consumption.
Abstract: In recent years, there has been a rapid and wide spread of non-traditional computing platforms, especially mobile and portable computing devices. As applications become increasingly sophisticated and processing power increases, the most serious limitation on these devices is the available battery life. Dynamic Voltage Scaling (DVS) has been a key technique in exploiting the hardware characteristics of processors to reduce energy dissipation by lowering the supply voltage and operating frequency. The DVS algorithms are shown to be able to make dramatic energy savings while providing the necessary peak computation power in general-purpose systems. However, for a large class of applications in embedded real-time systems like cellular phones and camcorders, the variable operating frequency interferes with their deadline guarantee mechanisms, and DVS in this context, despite its growing importance, is largely overlooked/under-developed. To provide real-time guarantees, DVS must consider deadlines and periodicity of real-time tasks, requiring integration with the real-time scheduler. In this paper, we present a class of novel algorithms called real-time DVS (RT-DVS) that modify the OS's real-time scheduler and task management service to provide significant energy savings while maintaining real-time deadline guarantees. We show through simulations and a working prototype implementation that these RT-DVS algorithms closely approach the theoretical lower bound on energy consumption, and can easily reduce energy consumption 20% to 40% in an embedded real-time system.

1,265 citations

Journal ArticleDOI
TL;DR: The other source of power dissipation in microprocessors, dynamic power, arises from the repeated capacitance charge and discharge on the output of the hundreds of millions of gates in today's chips.
Abstract: Off-state leakage is static power, current that leaks through transistors even when they are turned off. The other source of power dissipation in today's microprocessors, dynamic power, arises from the repeated capacitance charge and discharge on the output of the hundreds of millions of gates in today's chips. Until recently, only dynamic power has been a significant source of power consumption, and Moore's law helped control it. However, power consumption has now become a primary microprocessor design constraint; one that researchers in both industry and academia will struggle to overcome in the next few years. Microprocessor design has traditionally focused on dynamic power consumption as a limiting factor in system integration. As feature sizes shrink below 0.1 micron, static power is posing new low-power design challenges.

1,233 citations

Journal ArticleDOI
TL;DR: In this article, the authors present recent progress in understanding and manipulation of energy dissipation and transport in nanoscale solid-state structures, including silicon transistors, carbon nanostructures, and semiconductor nanowires.
Abstract: Understanding energy dissipation and transport in nanoscale structures is of great importance for the design of energy-efficient circuits and energy-conversion systems. This is also a rich domain for fundamental discoveries at the intersection of electron, lattice (phonon), and optical (photon) interactions. This review presents recent progress in understanding and manipulation of energy dissipation and transport in nanoscale solid-state structures. First, the landscape of power usage from nanoscale transistors (∼10−8 W) to massive data centers (∼109 W) is surveyed. Then, focus is given to energy dissipation in nanoscale circuits, silicon transistors, carbon nanostructures, and semiconductor nanowires. Concepts of steady-state and transient thermal transport are also reviewed in the context of nanoscale devices with sub-nanosecond switching times. Finally, recent directions regarding energy transport are reviewed, including electrical and thermal conductivity of nanostructures, thermal rectification, and the role of ubiquitous material interfaces. Open image in new window

994 citations