scispace - formally typeset
Search or ask a question
Author

Krittika Suwanrungruang

Other affiliations: Prince of Songkla University
Bio: Krittika Suwanrungruang is an academic researcher from Khon Kaen University. The author has contributed to research in topics: Population & Cancer registry. The author has an hindex of 20, co-authored 66 publications receiving 1624 citations. Previous affiliations of Krittika Suwanrungruang include Prince of Songkla University.


Papers
More filters
Journal ArticleDOI
TL;DR: Variations in survival correlated with early detection initiatives and level of development of health services, and emphasises the need for urgent investments in improving awareness, population-based cancer registration, early detection programmes, health-services infrastructure, and human resources.
Abstract: Summary Background Population-based cancer survival data, a key indicator for monitoring progress against cancer, are not widely available from countries in Africa, Asia, and Central America. The aim of this study is to describe and discuss cancer survival in these regions. Methods Survival analysis was done for 341 658 patients diagnosed with various cancers from 1990 to 2001 and followed up to 2003, from 25 population-based cancer registries in 12 countries in sub-Saharan Africa (The Gambia, Uganda), Central America (Costa Rica), and Asia (China, India, Pakistan, Philippines, Saudi Arabia, Singapore, South Korea, Thailand, Turkey). 5-year age-standardised relative survival (ASRS) and observed survival by clinical extent of disease were determined. Findings For cancers in which prognosis depends on stage at diagnosis, survival was highest in China, South Korea, Singapore, and Turkey and lowest in Uganda and The Gambia. 5-year ASRS ranged from 76–82% for breast cancer, 63–79% for cervical cancer, 71–78% for bladder cancer, and 44–60% for large-bowel cancers in China, Singapore, South Korea, and Turkey. Survival did not exceed 22% for any cancer site in The Gambia; in Uganda, survival did not exceed 13% for any cancer site except breast (46%). Variations in survival correlated with early detection initiatives and level of development of health services. Interpretation The wide variation in cancer survival between regions emphasises the need for urgent investments in improving awareness, population-based cancer registration, early detection programmes, health-services infrastructure, and human resources. Funding Association for International Cancer Research (AICR; St Andrews, UK), Association pour la Recherche sur le Cancer (ARC, Villejuif, France), and the Bill & Melinda Gates Foundation (Seattle, USA).

495 citations

Journal ArticleDOI
TL;DR: There was a positive association between prevalence of OV infection and incidence of cholangiocarcinoma at the population level, and the cancer registry is an appropriate tool for disease monitoring in small areas.
Abstract: Liver cancer is the most common cancer in Khon Kaen, Northeast Thailand, because of the high incidence of cholangiocarcinoma (CHCA). Opisthorchis viverrini (OV), a liver fluke, is endemic in the area, and has been evaluated as a cause of CHCA by International Agency for Research on Cancer. Residents of 20 districts in the province were invited to attend a mobile screening programme between 1990 and 2001. Of 24 723 participants, 18 393 aged 35-69 years were tested for OV infection, by examining stools for the presence of eggs. Prevalence of infection in each district was estimated from the sample of the population who had been tested. The incidence of liver cancer in 1990-2001 was obtained for each district from the cancer registry. The average crude prevalence of OV infection in the sample subjects was 24.5%, ranging from 2.1% to 70.8% in different districts. Truncated age-standardized incidence of CHCA at ages >35 years varied threefold between districts, from 93.8 to 317.6 per 100,000 person-years. After adjustment for age group, sex and period of sampling, there was a positive association between prevalence of OV infection and incidence of CHCA at the population level. Associations between CHCA and active OV infection in individuals have become hard to demonstrate, because of effective anti-OV treatment. The relationship may, however, be clear in comparisons between populations, which, for infectious diseases, take into account the contextual effects of group exposure in determining individual outcome. The cancer registry is an appropriate tool for disease monitoring in small areas.

234 citations

Journal ArticleDOI
Audrey Bonaventure1, Rhea Harewood1, Charles A. Stiller2, Gemma Gatta  +505 moreInstitutions (6)
TL;DR: Global inequalities in survival from childhood leukaemia have narrowed with time but remain very wide for both ALL and AML, which provides useful information for health policy makers on the effectiveness of health-care systems and for cancer policy makers to reduce inequalities in childhood cancer survival.

141 citations

Journal ArticleDOI
17 Aug 2017-Cancers
TL;DR: It is found that breast and colorectal cancer are increasing while cervical cancer is decreasing nationwide, however, liver and lung cancers exhibit disproportionately higher burdens in the northeast and north regions, respectively.
Abstract: In Thailand, five cancer types—breast, cervical, colorectal, liver and lung cancer—contribute to over half of the cancer burden. The magnitude of these cancers must be quantified over time to assess previous health policies and highlight future trajectories for targeted prevention efforts. We provide a comprehensive assessment of these five cancers nationally and subnationally, with trend analysis, projections, and number of cases expected for the year 2025 using cancer registry data. We found that breast (average annual percent change (AAPC): 3.1%) and colorectal cancer (female AAPC: 3.3%, male AAPC: 4.1%) are increasing while cervical cancer (AAPC: −4.4%) is decreasing nationwide. However, liver and lung cancers exhibit disproportionately higher burdens in the northeast and north regions, respectively. Lung cancer increased significantly in northeastern and southern women, despite low smoking rates. Liver cancers are expected to increase in the northern males and females. Liver cancer increased in the south, despite the absence of the liver fluke, a known factor, in this region. Our findings are presented in the context of health policy, population dynamics and serve to provide evidence for future prevention strategies. Our subnational estimates provide a basis for understanding variations in region-specific risk factor profiles that contribute to incidence trends over time.

77 citations

Journal Article
TL;DR: The Khon Kaen study has recruited about 25,000 subjects, aged mainly 35-64, from villages in the relatively underdeveloped north-east of Thailand, giving important information on the relative importance of dietary and lifestyle factors in a rural population, undergoing gradual transition to a more westernised lifestyle.
Abstract: Cohort studies are the preferred design in observational epidemiology, but few involving the general population have been performed in Asia, and most concern affluent urban populations. The Khon Kaen study has recruited about 25,000 subjects, aged mainly 35-64, from villages in the relatively underdeveloped north-east of Thailand. All subjects underwent simple physical examination, completed an interviewer-administered questionnaire (including sections on lifestyle, habits, and diet) and donated specimens of blood, which were processed and stored in a biological bank at -20 degrees C. Female subjects (about 16,500) were offered screening by Pap smear, and specimens of cells from the cervix were stored at -20 degrees C. This paper describes the methodology of the study, and the characteristics of the participants. Almost all subjects are peasant farmers, with low annual income and body mass, although 14.6% of women had a BMI in the obese range (>30 kg/m(2)). Smoking was common among men (78% regular smokers, most of whom used home-produced cigarettes), but rare among women. Fertility levels were relatively high, with a more than half the women having four or more live births. 23.4% of subjects were infected with the liver fluke Opisthorchis viverrini, known to be highly endemic in this region. Follow-up of the cohort is by record-linkage to the provincial cancer registry. By 2003, 762 cancer cases had occurred, the most common being cancers of the liver (363 cases) and cervix uteri (44 cases). The antecedents of these cancers are being investigated using a nested case-control approach. The cohort will yield increasing numbers of cancers for study in the next decade, giving important information on the relative importance of dietary and lifestyle factors in a rural population, undergoing gradual transition to a more westernised lifestyle.

51 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A substantial proportion of the worldwide burden of cancer could be prevented through the application of existing cancer control knowledge and by implementing programs for tobacco control, vaccination, and early detection and treatment, as well as public health campaigns promoting physical activity and a healthier dietary intake.
Abstract: The global burden of cancer continues to increase largely because of the aging and growth of the world population alongside an increasing adoption of cancer-causing behaviors, particularly smoking, in economically developing countries. Based on the GLOBOCAN 2008 estimates, about 12.7 million cancer cases and 7.6 million cancer deaths are estimated to have occurred in 2008; of these, 56% of the cases and 64% of the deaths occurred in the economically developing world. Breast cancer is the most frequently diagnosed cancer and the leading cause of cancer death among females, accounting for 23% of the total cancer cases and 14% of the cancer deaths. Lung cancer is the leading cancer site in males, comprising 17% of the total new cancer cases and 23% of the total cancer deaths. Breast cancer is now also the leading cause of cancer death among females in economically developing countries, a shift from the previous decade during which the most common cause of cancer death was cervical cancer. Further, the mortality burden for lung cancer among females in developing countries is as high as the burden for cervical cancer, with each accounting for 11% of the total female cancer deaths. Although overall cancer incidence rates in the developing world are half those seen in the developed world in both sexes, the overall cancer mortality rates are generally similar. Cancer survival tends to be poorer in developing countries, most likely because of a combination of a late stage at diagnosis and limited access to timely and standard treatment. A substantial proportion of the worldwide burden of cancer could be prevented through the application of existing cancer control knowledge and by implementing programs for tobacco control, vaccination (for liver and cervical cancers), and early detection and treatment, as well as public health campaigns promoting physical activity and a healthier dietary intake. Clinicians, public health professionals, and policy makers can play an active role in accelerating the application of such interventions globally.

52,293 citations

Journal ArticleDOI
TL;DR: The results for 20 world regions are presented, summarizing the global patterns for the eight most common cancers, and striking differences in the patterns of cancer from region to region are observed.
Abstract: Estimates of the worldwide incidence and mortality from 27 cancers in 2008 have been prepared for 182 countries as part of the GLOBOCAN series published by the International Agency for Research on Cancer. In this article, we present the results for 20 world regions, summarizing the global patterns for the eight most common cancers. Overall, an estimated 12.7 million new cancer cases and 7.6 million cancer deaths occur in 2008, with 56% of new cancer cases and 63% of the cancer deaths occurring in the less developed regions of the world. The most commonly diagnosed cancers worldwide are lung (1.61 million, 12.7% of the total), breast (1.38 million, 10.9%) and colorectal cancers (1.23 million, 9.7%). The most common causes of cancer death are lung cancer (1.38 million, 18.2% of the total), stomach cancer (738,000 deaths, 9.7%) and liver cancer (696,000 deaths, 9.2%). Cancer is neither rare anywhere in the world, nor mainly confined to high-resource countries. Striking differences in the patterns of cancer from region to region are observed.

21,040 citations

Journal ArticleDOI
TL;DR: Changing global incidence and mortality patterns for select common cancers and the opportunities for cancer prevention in developing countries are described.
Abstract: While incidence and mortality rates for most cancers (including lung, colorectum, female breast, and prostate) are decreasing in the United States and many other western countries, they are increasing in several less developed and economically transitioning countries because of adoption of unhealthy western lifestyles such as smoking and physical inactivity and consumption of calorie-dense food. Indeed, the rates for lung and colon cancers in a few of these countries have already surpassed those in the United States and other western countries. Most developing countries also continue to be disproportionately affected by cancers related to infectious agents, such as cervix, liver, and stomach cancers. The proportion of new cancer cases diagnosed in less developed countries is projected to increase from about 56% of the world total in 2008 to more than 60% in 2030 because of the increasing trends in cancer rates and expected increases in life expectancy and growth of the population. In this review, we describe these changing global incidence and mortality patterns for select common cancers and the opportunities for cancer prevention in developing countries.

2,577 citations

Journal Article

2,378 citations

Journal ArticleDOI
Christina Fitzmaurice1, Christina Fitzmaurice2, Daniel Dicker1, Daniel Dicker2, Amanda W Pain1, Hannah Hamavid1, Maziar Moradi-Lakeh1, Michael F. MacIntyre3, Michael F. MacIntyre1, Christine Allen1, Gillian M. Hansen1, Rachel Woodbrook1, Charles D.A. Wolfe1, Randah R. Hamadeh4, Ami R. Moore5, A. Werdecker6, Bradford D. Gessner, Braden Te Ao, Brian J. McMahon7, Chante Karimkhani8, Chuanhua Yu9, Graham S Cooke10, David C. Schwebel11, David O. Carpenter12, David M. Pereira13, Denis Nash, Dhruv S. Kazi14, Diego De Leo15, Dietrich Plass16, Kingsley N. Ukwaja17, George D. Thurston, Kim Yun Jin18, Edgar P. Simard19, Edward J Mills20, Eun-Kee Park21, Ferrán Catalá-López22, Gabrielle deVeber, Carolyn C. Gotay23, Gulfaraz Khan24, H. Dean Hosgood25, Itamar S. Santos26, Janet L Leasher27, Jasvinder A. Singh28, James Leigh12, Jost B. Jonas29, Juan R. Sanabria30, Justin Beardsley31, Justin Beardsley32, Kathryn H. Jacobsen33, Ken Takahashi34, Richard C. Franklin, Luca Ronfani35, Marcella Montico36, Luigi Naldi36, Marcello Tonelli, Johanna M. Geleijnse37, Max Petzold38, Mark G. Shrime39, Mark G. Shrime40, Mustafa Z. Younis41, Naohiro Yonemoto42, Nicholas J K Breitborde, Paul S. F. Yip43, Farshad Pourmalek44, Paulo A. Lotufo24, Alireza Esteghamati27, Graeme J. Hankey45, Raghib Ali46, Raimundas Lunevicius33, Reza Malekzadeh47, Robert P. Dellavalle45, Robert G. Weintraub48, Robert G. Weintraub49, Robyn M. Lucas50, Robyn M. Lucas51, Roderick J Hay52, David Rojas-Rueda, Ronny Westerman, Sadaf G. Sepanlou53, Sandra Nolte, Scott B. Patten54, Scott Weichenthal37, Semaw Ferede Abera55, Seyed-Mohammad Fereshtehnejad56, Ivy Shiue57, Tim Driscoll58, Tim Driscoll59, Tommi J. Vasankari29, Ubai Alsharif, Vafa Rahimi-Movaghar54, Vasiliy Victorovich Vlassov45, W. S. Marcenes60, Wubegzier Mekonnen61, Yohannes Adama Melaku62, Yuichiro Yano56, Al Artaman63, Ismael Campos, Jennifer H MacLachlan41, Ulrich O Mueller, Daniel Kim53, Matias Trillini64, Babak Eshrati65, Hywel C Williams66, Kenji Shibuya67, Rakhi Dandona68, Kinnari S. Murthy69, Benjamin C Cowie69, Azmeraw T. Amare, Carl Abelardo T. Antonio70, Carlos A Castañeda-Orjuela71, Coen H. Van Gool, Francesco Saverio Violante, In-Hwan Oh72, Kedede Deribe73, Kjetil Søreide74, Kjetil Søreide62, Luke D. Knibbs75, Luke D. Knibbs76, Maia Kereselidze77, Mark Green78, Rosario Cardenas79, Nobhojit Roy80, Taavi Tillmann57, Yongmei Li81, Hans Krueger82, Lorenzo Monasta24, Subhojit Dey36, Sara Sheikhbahaei, Nima Hafezi-Nejad45, G Anil Kumar45, Chandrashekhar T Sreeramareddy69, Lalit Dandona83, Haidong Wang1, Haidong Wang69, Stein Emil Vollset1, Ali Mokdad84, Ali Mokdad76, Joshua A. Salomon1, Rafael Lozano41, Theo Vos1, Mohammad H. Forouzanfar1, Alan D. Lopez1, Christopher J L Murray50, Mohsen Naghavi1 
Institute for Health Metrics and Evaluation1, University of Washington2, Iran University of Medical Sciences3, King's College London4, Arabian Gulf University5, University of North Texas6, Auckland University of Technology7, Alaska Native Tribal Health Consortium8, Columbia University9, Wuhan University10, Imperial College London11, University of Alabama at Birmingham12, University at Albany, SUNY13, City University of New York14, University of California, San Francisco15, Griffith University16, Environment Agency17, New York University18, Southern University College19, Emory University20, University of Ottawa21, Kosin University22, University of Toronto23, University of British Columbia24, United Arab Emirates University25, Albert Einstein College of Medicine26, University of São Paulo27, Nova Southeastern University28, University of Sydney29, Heidelberg University30, Cancer Treatment Centers of America31, Case Western Reserve University32, University of Oxford33, George Mason University34, James Cook University35, University of Trieste36, University of Calgary37, Wageningen University and Research Centre38, University of Gothenburg39, University of the Witwatersrand40, Harvard University41, Jackson State University42, University of Arizona43, University of Hong Kong44, Tehran University of Medical Sciences45, University of Western Australia46, Aintree University Hospitals NHS Foundation Trust47, University of Colorado Denver48, Veterans Health Administration49, University of Melbourne50, Royal Children's Hospital51, Australian National University52, University of Marburg53, Charité54, Health Canada55, College of Health Sciences, Bahrain56, Karolinska Institutet57, Northumbria University58, University of Edinburgh59, National Research University – Higher School of Economics60, Queen Mary University of London61, Addis Ababa University62, Northwestern University63, Northeastern University64, Mario Negri Institute for Pharmacological Research65, Arak University of Medical Sciences66, University of Nottingham67, University of Tokyo68, Public Health Foundation of India69, University of Groningen70, University of the Philippines Manila71, University of Bologna72, Kyung Hee University73, Brighton and Sussex Medical School74, Stavanger University Hospital75, University of Bergen76, University of Queensland77, National Centre for Disease Control78, University of Sheffield79, Universidad Autónoma Metropolitana80, University College London81, Genentech82, Universiti Tunku Abdul Rahman83, Norwegian Institute of Public Health84
TL;DR: To estimate mortality, incidence, years lived with disability, years of life lost, and disability-adjusted life-years for 28 cancers in 188 countries by sex from 1990 to 2013, the general methodology of the Global Burden of Disease 2013 study was used.
Abstract: Importance Cancer is among the leading causes of death worldwide. Current estimates of cancer burden in individual countries and regions are necessary to inform local cancer control strategies. Objective To estimate mortality, incidence, years lived with disability (YLDs), years of life lost (YLLs), and disability-adjusted life-years (DALYs) for 28 cancers in 188 countries by sex from 1990 to 2013. Evidence Review The general methodology of the Global Burden of Disease (GBD) 2013 study was used. Cancer registries were the source for cancer incidence data as well as mortality incidence (MI) ratios. Sources for cause of death data include vital registration system data, verbal autopsy studies, and other sources. The MI ratios were used to transform incidence data to mortality estimates and cause of death estimates to incidence estimates. Cancer prevalence was estimated using MI ratios as surrogates for survival data; YLDs were calculated by multiplying prevalence estimates with disability weights, which were derived from population-based surveys; YLLs were computed by multiplying the number of estimated cancer deaths at each age with a reference life expectancy; and DALYs were calculated as the sum of YLDs and YLLs. Findings In 2013 there were 14.9 million incident cancer cases, 8.2 million deaths, and 196.3 million DALYs. Prostate cancer was the leading cause for cancer incidence (1.4 million) for men and breast cancer for women (1.8 million). Tracheal, bronchus, and lung (TBL) cancer was the leading cause for cancer death in men and women, with 1.6 million deaths. For men, TBL cancer was the leading cause of DALYs (24.9 million). For women, breast cancer was the leading cause of DALYs (13.1 million). Age-standardized incidence rates (ASIRs) per 100 000 and age-standardized death rates (ASDRs) per 100 000 for both sexes in 2013 were higher in developing vs developed countries for stomach cancer (ASIR, 17 vs 14; ASDR, 15 vs 11), liver cancer (ASIR, 15 vs 7; ASDR, 16 vs 7), esophageal cancer (ASIR, 9 vs 4; ASDR, 9 vs 4), cervical cancer (ASIR, 8 vs 5; ASDR, 4 vs 2), lip and oral cavity cancer (ASIR, 7 vs 6; ASDR, 2 vs 2), and nasopharyngeal cancer (ASIR, 1.5 vs 0.4; ASDR, 1.2 vs 0.3). Between 1990 and 2013, ASIRs for all cancers combined (except nonmelanoma skin cancer and Kaposi sarcoma) increased by more than 10% in 113 countries and decreased by more than 10% in 12 of 188 countries. Conclusions and Relevance Cancer poses a major threat to public health worldwide, and incidence rates have increased in most countries since 1990. The trend is a particular threat to developing nations with health systems that are ill-equipped to deal with complex and expensive cancer treatments. The annual update on the Global Burden of Cancer will provide all stakeholders with timely estimates to guide policy efforts in cancer prevention, screening, treatment, and palliation.

2,375 citations