scispace - formally typeset
Search or ask a question
Author

Krystyna M. Saunders

Bio: Krystyna M. Saunders is an academic researcher from Australian Nuclear Science and Technology Organisation. The author has contributed to research in topics: Holocene & Climate change. The author has an hindex of 20, co-authored 47 publications receiving 1404 citations. Previous affiliations of Krystyna M. Saunders include University of Tasmania & Monash University, Clayton campus.


Papers
More filters
Journal ArticleDOI
Julien Emile-Geay1, Nicholas P. McKay2, Darrell S. Kaufman2, Lucien von Gunten, Jianghao Wang3, Kevin J. Anchukaitis4, Nerilie J. Abram5, Jason A. Addison6, Mark A. J. Curran7, Mark A. J. Curran8, Michael N. Evans9, Benjamin J. Henley10, Zhixin Hao, Belen Martrat11, Belen Martrat12, Helen McGregor13, Raphael Neukom14, Gregory T. Pederson6, Barbara Stenni15, Kaustubh Thirumalai16, Johannes P. Werner17, Chenxi Xu18, Dmitry Divine19, Bronwyn C. Dixon10, Joelle Gergis10, Ignacio A. Mundo20, Takeshi Nakatsuka, Steven J. Phipps7, Cody C. Routson2, Eric J. Steig21, Jessica E. Tierney4, Jonathan J. Tyler22, Kathryn Allen10, Nancy A. N. Bertler23, Jesper Björklund24, Brian M. Chase25, Min Te Chen26, Edward R. Cook27, Rixt de Jong14, Kristine L. DeLong28, Daniel A. Dixon29, Alexey A. Ekaykin30, Alexey A. Ekaykin31, Vasile Ersek32, Helena L. Filipsson33, Pierre Francus34, Mandy Freund10, Massimo Frezzotti, Narayan Prasad Gaire35, Narayan Prasad Gaire36, Konrad Gajewski37, Quansheng Ge, Hugues Goosse38, Anastasia Gornostaeva, Martin Grosjean14, Kazuho Horiuchi39, Anne Hormes40, Katrine Husum19, Elisabeth Isaksson19, Selvaraj Kandasamy41, Kenji Kawamura42, Kenji Kawamura43, K. Halimeda Kilbourne9, Nalan Koc19, Guillaume Leduc44, Hans W. Linderholm40, Andrew Lorrey45, Vladimir Mikhalenko46, P. Graham Mortyn47, Hideaki Motoyama42, Andrew D. Moy7, Andrew D. Moy8, Robert Mulvaney48, Philipp Munz49, David J. Nash50, David J. Nash51, Hans Oerter52, Thomas Opel52, Anais Orsi53, Dmitriy V. Ovchinnikov54, Trevor J. Porter55, Heidi A. Roop56, Casey Saenger21, Masaki Sano, David J. Sauchyn38, Krystyna M. Saunders14, Krystyna M. Saunders57, Marit-Solveig Seidenkrantz58, Mirko Severi59, Xuemei Shao, Marie-Alexandrine Sicre60, Michael Sigl61, Kate E. Sinclair, Scott St. George62, Jeannine-Marie St. Jacques63, Jeannine-Marie St. Jacques64, Meloth Thamban65, Udya Kuwar Thapa62, Elizabeth R. Thomas48, Chris S. M. Turney66, Ryu Uemura67, A. E. Viau37, Diana Vladimirova31, Diana Vladimirova30, Eugene R. Wahl68, James W. C. White69, Zicheng Yu70, Jens Zinke71, Jens Zinke72 
University of Southern California1, Northern Arizona University2, MathWorks3, University of Arizona4, Australian National University5, United States Geological Survey6, University of Tasmania7, Australian Antarctic Division8, University of Maryland, College Park9, University of Melbourne10, University of Cambridge11, Spanish National Research Council12, University of Wollongong13, University of Bern14, Ca' Foscari University of Venice15, University of Texas at Austin16, University of Bergen17, Chinese Academy of Sciences18, Norwegian Polar Institute19, National University of Cuyo20, University of Washington21, University of Adelaide22, Victoria University of Wellington23, Swiss Federal Institute for Forest, Snow and Landscape Research24, University of Montpellier25, National Taiwan Ocean University26, Columbia University27, Louisiana State University28, University of Maine29, Arctic and Antarctic Research Institute30, Saint Petersburg State University31, Northumbria University32, Lund University33, Institut national de la recherche scientifique34, Tribhuvan University35, Nepal Academy of Science and Technology36, University of Ottawa37, Université catholique de Louvain38, Hirosaki University39, University of Gothenburg40, Xiamen University41, National Institute of Polar Research42, Japan Agency for Marine-Earth Science and Technology43, Aix-Marseille University44, National Institute of Water and Atmospheric Research45, Russian Academy of Sciences46, Autonomous University of Barcelona47, British Antarctic Survey48, University of Tübingen49, University of Brighton50, University of the Witwatersrand51, Alfred Wegener Institute for Polar and Marine Research52, Université Paris-Saclay53, Sukachev Institute of Forest54, University of Toronto55, University at Buffalo56, Australian Nuclear Science and Technology Organisation57, Aarhus University58, University of Florence59, Pierre-and-Marie-Curie University60, Paul Scherrer Institute61, University of Minnesota62, University of Regina63, Concordia University64, National Centre for Antarctic and Ocean Research65, University of New South Wales66, University of the Ryukyus67, National Oceanic and Atmospheric Administration68, University of Colorado Boulder69, Lehigh University70, Australian Institute of Marine Science71, Free University of Berlin72
TL;DR: A community-sourced database of temperature-sensitive proxy records from the PAGES2k initiative, suited to investigations of global and regional temperature variability over the Common Era, and is shared in the Linked Paleo Data (LiPD) format, including serializations in Matlab, R and Python.
Abstract: Reproducible climate reconstructions of the Common Era (1 CE to present) are key to placing industrial-era warming into the context of natural climatic variability. Here we present a community-sourced database of temperature-sensitive proxy records from the PAGES2k initiative. The database gathers 692 records from 648 locations, including all continental regions and major ocean basins. The records are from trees, ice, sediment, corals, speleothems, documentary evidence, and other archives. They range in length from 50 to 2000 years, with a median of 547 years, while temporal resolution ranges from biweekly to centennial. Nearly half of the proxy time series are significantly correlated with HadCRUT4.2 surface temperature over the period 1850–2014. Global temperature composites show a remarkable degree of coherence between high- and low-resolution archives, with broadly similar patterns across archive types, terrestrial versus marine locations, and screening criteria. The database is suited to investigations of global and regional temperature variability over the Common Era, and is shared in the Linked Paleo Data (LiPD) format, including serializations in Matlab, R and Python.

260 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present a series of timeslice maps for 20 ka, 15 ka, 10 ka and 5 ka, including grounding line position and ice sheet thickness changes, along with a clear assessment of levels of confidence.

256 citations

Journal ArticleDOI
Darrell S. Kaufman1, Nicholas P. McKay1, Cody C. Routson1, M. P. Erb1, Basil A. S. Davis2, Oliver Heiri3, Samuel L Jaccard4, Jessica E. Tierney5, Christoph Dätwyler6, Yarrow Axford7, Thomas Brussel8, Olivier Cartapanis4, Brian M. Chase9, Andria Dawson10, Anne de Vernal11, Stefan Engels12, Lukas Jonkers13, Jeremiah Marsicek14, Paola Moffa-Sanchez15, Carrie Morrill16, Anais Orsi17, Kira Rehfeld18, Krystyna M. Saunders19, Philipp Sommer2, Elizabeth K. Thomas20, Marcela Sandra Tonello21, Mónika Tóth, Richard S. Vachula22, Andrei Andreev23, Sebastien Bertrand24, Boris K. Biskaborn23, Manuel Bringué25, Stephen J. Brooks26, Magaly Caniupán27, Manuel Chevalier2, Les C. Cwynar28, Julien Emile-Geay29, John M. Fegyveresi1, Angelica Feurdean30, Walter Finsinger9, Marie Claude Fortin31, Louise C. Foster32, Louise C. Foster33, Mathew Fox5, Konrad Gajewski31, Martin Grosjean6, Sonja Hausmann, Markus Heinrichs34, Naomi Holmes35, Boris P. Ilyashuk36, Elena A. Ilyashuk36, Steve Juggins33, Deborah Khider29, Karin A. Koinig36, Peter G. Langdon37, Isabelle Larocque-Tobler, Jianyong Li38, André F. Lotter4, Tomi P. Luoto39, Anson W. Mackay40, Enikö Magyari41, Steven B. Malevich5, Bryan G. Mark42, Julieta Massaferro43, Vincent Montade9, Larisa Nazarova44, Elena Novenko45, Petr Pařil46, Emma J. Pearson33, Matthew Peros47, Reinhard Pienitz48, Mateusz Płóciennik49, David F. Porinchu50, Aaron P. Potito51, Andrew P. Rees52, Scott A. Reinemann53, Stephen J. Roberts32, Nicolas Rolland54, Sakari Salonen39, Angela Self55, Heikki Seppä39, Shyhrete Shala56, Jeannine Marie St-Jacques57, Barbara Stenni58, Liudmila Syrykh59, Pol Tarrats60, Karen J. Taylor51, Karen J. Taylor61, Valerie van den Bos52, Gaute Velle, Eugene R. Wahl62, Ian R. Walker63, Janet M. Wilmshurst64, Enlou Zhang65, Snezhana Zhilich66 
Northern Arizona University1, University of Lausanne2, University of Basel3, University of Bern4, University of Arizona5, Oeschger Centre for Climate Change Research6, Northwestern University7, University of Utah8, Centre national de la recherche scientifique9, Mount Royal University10, Université du Québec à Montréal11, Birkbeck, University of London12, University of Bremen13, University of Wisconsin-Madison14, Durham University15, Cooperative Institute for Research in Environmental Sciences16, Université Paris-Saclay17, Heidelberg University18, Australian Nuclear Science and Technology Organisation19, University at Buffalo20, National University of Mar del Plata21, Brown University22, Alfred Wegener Institute for Polar and Marine Research23, Ghent University24, Geological Survey of Canada25, American Museum of Natural History26, University of Concepción27, University of New Brunswick28, University of Southern California29, Goethe University Frankfurt30, University of Ottawa31, British Antarctic Survey32, Newcastle University33, Okanagan College34, Sheffield Hallam University35, University of Innsbruck36, University of Southampton37, Northwest University (China)38, University of Helsinki39, University College London40, Eötvös Loránd University41, Ohio State University42, National Scientific and Technical Research Council43, University of Potsdam44, Moscow State University45, Masaryk University46, Bishop's University47, Laval University48, University of Łódź49, University of Georgia50, National University of Ireland, Galway51, Victoria University of Wellington52, Sinclair Community College53, Fisheries and Oceans Canada54, Natural History Museum55, Stockholm University56, Concordia University Wisconsin57, Ca' Foscari University of Venice58, Pedagogical University59, University of Barcelona60, University College Cork61, National Oceanic and Atmospheric Administration62, University of British Columbia63, Landcare Research64, Chinese Academy of Sciences65, Russian Academy of Sciences66
TL;DR: A global compilation of quality-controlled, published, temperature-sensitive proxy records extending back 12,000 years through the Holocene, which can be used to reconstruct the spatiotemporal evolution of Holocene temperature at global to regional scales, is presented.
Abstract: A comprehensive database of paleoclimate records is needed to place recent warming into the longer-term context of natural climate variability. We present a global compilation of quality-controlled, published, temperature-sensitive proxy records extending back 12,000 years through the Holocene. Data were compiled from 679 sites where time series cover at least 4000 years, are resolved at sub-millennial scale (median spacing of 400 years or finer) and have at least one age control point every 3000 years, with cut-off values slackened in data-sparse regions. The data derive from lake sediment (51%), marine sediment (31%), peat (11%), glacier ice (3%), and other natural archives. The database contains 1319 records, including 157 from the Southern Hemisphere. The multi-proxy database comprises paleotemperature time series based on ecological assemblages, as well as biophysical and geochemical indicators that reflect mean annual or seasonal temperatures, as encoded in the database. This database can be used to reconstruct the spatiotemporal evolution of Holocene temperature at global to regional scales, and is publicly available in Linked Paleo Data (LiPD) format.

141 citations

Journal ArticleDOI
TL;DR: In this article, the authors present a continuous sediment record from a lake in the Larsemann Hills, situated on a peninsula believed to have been ice-free for at least 40,000 years.

115 citations


Cited by
More filters
01 Apr 2016
TL;DR: The evidence suggests that of the various proposed dates two do appear to conform to the criteria to mark the beginning of the Anthropocene: 1610 and 1964.
Abstract: Time is divided by geologists according to marked shifts in Earth's state. Recent global environmental changes suggest that Earth may have entered a new human-dominated geological epoch, the Anthropocene. Here we review the historical genesis of the idea and assess anthropogenic signatures in the geological record against the formal requirements for the recognition of a new epoch. The evidence suggests that of the various proposed dates two do appear to conform to the criteria to mark the beginning of the Anthropocene: 1610 and 1964. The formal establishment of an Anthropocene Epoch would mark a fundamental change in the relationship between humans and the Earth system.

1,173 citations

Journal ArticleDOI
Andrew Shepherd1, Erik R. Ivins2, Eric Rignot3, Ben Smith4, Michiel R. van den Broeke, Isabella Velicogna3, Pippa L. Whitehouse5, Kate Briggs1, Ian Joughin4, Gerhard Krinner6, Sophie Nowicki7, Tony Payne8, Ted Scambos9, Nicole Schlegel2, Geruo A3, Cécile Agosta, Andreas P. Ahlstrøm10, Greg Babonis11, Valentina R. Barletta12, Alejandro Blazquez, Jennifer Bonin13, Beata Csatho11, Richard I. Cullather7, Denis Felikson14, Xavier Fettweis, René Forsberg12, Hubert Gallée6, Alex S. Gardner2, Lin Gilbert15, Andreas Groh16, Brian Gunter17, Edward Hanna18, Christopher Harig19, Veit Helm20, Alexander Horvath21, Martin Horwath16, Shfaqat Abbas Khan12, Kristian K. Kjeldsen10, Hannes Konrad1, Peter L. Langen22, Benoit S. Lecavalier23, Bryant D. Loomis7, Scott B. Luthcke7, Malcolm McMillan1, Daniele Melini24, Sebastian H. Mernild25, Sebastian H. Mernild26, Sebastian H. Mernild27, Yara Mohajerani3, Philip Moore28, Jeremie Mouginot6, Jeremie Mouginot3, Gorka Moyano, Alan Muir15, Thomas Nagler, Grace A. Nield5, Johan Nilsson2, Brice Noël, Ines Otosaka1, Mark E. Pattle, W. Richard Peltier29, Nadege Pie14, Roelof Rietbroek30, Helmut Rott, Louise Sandberg-Sørensen12, Ingo Sasgen20, Himanshu Save14, Bernd Scheuchl3, Ernst Schrama31, Ludwig Schröder16, Ki-Weon Seo32, Sebastian B. Simonsen12, Thomas Slater1, Giorgio Spada33, T. C. Sutterley3, Matthieu Talpe9, Lev Tarasov23, Willem Jan van de Berg, Wouter van der Wal31, Melchior van Wessem, Bramha Dutt Vishwakarma34, David N. Wiese2, Bert Wouters 
14 Jun 2018-Nature
TL;DR: This work combines satellite observations of its changing volume, flow and gravitational attraction with modelling of its surface mass balance to show that the Antarctic Ice Sheet lost 2,720 ± 1,390 billion tonnes of ice between 1992 and 2017, which corresponds to an increase in mean sea level of 7.6‚¬3.9 millimetres.
Abstract: The Antarctic Ice Sheet is an important indicator of climate change and driver of sea-level rise. Here we combine satellite observations of its changing volume, flow and gravitational attraction with modelling of its surface mass balance to show that it lost 2,720 ± 1,390 billion tonnes of ice between 1992 and 2017, which corresponds to an increase in mean sea level of 7.6 ± 3.9 millimetres (errors are one standard deviation). Over this period, ocean-driven melting has caused rates of ice loss from West Antarctica to increase from 53 ± 29 billion to 159 ± 26 billion tonnes per year; ice-shelf collapse has increased the rate of ice loss from the Antarctic Peninsula from 7 ± 13 billion to 33 ± 16 billion tonnes per year. We find large variations in and among model estimates of surface mass balance and glacial isostatic adjustment for East Antarctica, with its average rate of mass gain over the period 1992–2017 (5 ± 46 billion tonnes per year) being the least certain.

725 citations

Journal ArticleDOI
TL;DR: The Southern Hemisphere climate system varies on timescales from orbital, through millennial to sub-annual, and is closely coupled to other parts of the global climate system as discussed by the authors.
Abstract: The Antarctic climate system varies on timescales from orbital, through millennial to sub-annual, and is closely coupled to other parts of the global climate system. We review these variations from the perspective of the geological and glaciological records and the recent historical period from which we have instrumental data (the last 50 years). We consider their consequences for the biosphere, and show how the latest numerical models project changes into the future, taking into account human actions in the form of the release of greenhouse gases and chlorofluorocarbons into the atmosphere. In doing so, we provide an essential Southern Hemisphere companion to the Arctic Climate Impact Assessment.

559 citations

Journal ArticleDOI
TL;DR: In this paper, the authors estimate that the direct effect of the pandemic-driven response will be negligible, with a cooling of around 0.01 ± 0.005°C by 2030 compared to a baseline scenario that follows current national policies.
Abstract: The global response to the COVID-19 pandemic has led to a sudden reduction of both GHG emissions and air pollutants. Here, using national mobility data, we estimate global emission reductions for ten species during the period February to June 2020. We estimate that global NOx emissions declined by as much as 30% in April, contributing a short-term cooling since the start of the year. This cooling trend is offset by ~20% reduction in global SO2 emissions that weakens the aerosol cooling effect, causing short-term warming. As a result, we estimate that the direct effect of the pandemic-driven response will be negligible, with a cooling of around 0.01 ± 0.005 °C by 2030 compared to a baseline scenario that follows current national policies. In contrast, with an economic recovery tilted towards green stimulus and reductions in fossil fuel investments, it is possible to avoid future warming of 0.3 °C by 2050.

414 citations

Journal ArticleDOI
18 Jun 2014-PLOS ONE
TL;DR: It is highlighted how anthropogenic millimeter-sized polymers have created a new pelagic habitat for microorganisms and invertebrates in Australia-wide coastal and oceanic, tropical to temperate sample collections.
Abstract: Millimeter-sized plastics are abundant in most marine surface waters, and known to carry fouling organisms that potentially play key roles in the fate and ecological impacts of plastic pollution. In this study we used scanning electron microscopy to characterize biodiversity of organisms on the surface of 68 small floating plastics (length range = 1.7–24.3 mm, median = 3.2 mm) from Australia-wide coastal and oceanic, tropical to temperate sample collections. Diatoms were the most diverse group of plastic colonizers, represented by 14 genera. We also recorded ‘epiplastic’ coccolithophores (7 genera), bryozoans, barnacles (Lepas spp.), a dinoflagellate (Ceratium), an isopod (Asellota), a marine worm, marine insect eggs (Halobates sp.), as well as rounded, elongated, and spiral cells putatively identified as bacteria, cyanobacteria, and fungi. Furthermore, we observed a variety of plastic surface microtextures, including pits and grooves conforming to the shape of microorganisms, suggesting that biota may play an important role in plastic degradation. This study highlights how anthropogenic millimeter-sized polymers have created a new pelagic habitat for microorganisms and invertebrates. The ecological ramifications of this phenomenon for marine organism dispersal, ocean productivity, and biotransfer of plastic-associated pollutants, remains to be elucidated.

388 citations