scispace - formally typeset
Search or ask a question
Author

Kuanping Gong

Bio: Kuanping Gong is an academic researcher from Chinese Academy of Sciences. The author has contributed to research in topics: Carbon nanotube & Glassy carbon. The author has an hindex of 9, co-authored 9 publications receiving 1784 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the adsorption of electroactive methylene blue (MB) dye onto single-walled carbon nanotubes (SWNTs) to form an electrochemically functional nanostructure and its layered nanocomposite is described.
Abstract: This paper describes the adsorption of electroactive methylene blue (MB) dye onto single-walled carbon nanotubes (SWNTs) to form an electrochemically functional nanostructure and its layered nanocomposite. UV−visible and FT-IR spectroscopy and electrochemistry used for characterization of the MB adsorption onto SWNTs reveal that MB essentially interacts with SWNTs through charge-transfer and hydrophobic interactions, leading to the formation of a MB−SWNT adsorptive nanostructure which exhibits distinct electrochemical properties from those of MB adsorbed onto a glassy carbon (GC) electrode. The interactions between MB and the SWNTs are demonstrated to closely associate with the structural properties of the SWNTs by comparing the electrochemical properties of MB adsorbed onto different substrates, i.e., glassy carbon, SWNTs, and SWNTs intentionally sidewall functionalized with hydroxyl groups (SWNT-OHs). The stable adsorption of water-soluble and positively charged MB molecules onto the SWNTs is further de...

325 citations

Journal ArticleDOI
TL;DR: Cyclic voltammetric results with assembled MWNT electrode indicate that the strategy based on the LBL method for assembling the MWNT multilayer films on substrate well retains the electrochemical catalytic activity of theMWNTs toward ascorbic acid and dopamine.

314 citations

Journal ArticleDOI
TL;DR: This review addresses recent developments in electrochemistry and electroanalytical chemistry of carbon nanotubes (CNTs), which have been proved to possess unique electronic, chemical and structural features that make them very attractive for electrochemical studies and electrochemical applications.
Abstract: This review addresses recent developments in electrochemistry and electroanalytical chemistry of carbon nanotubes (CNTs). CNTs have been proved to possess unique electronic, chemical and structural features that make them very attractive for electrochemical studies and electrochemical applications. For example, the structural and electronic properties of the CNTs endow them with distinct electrocatalytic activities and capabilities for facilitating direct electrochemistry of proteins and enzymes from other kinds of carbon materials. These striking electrochemical properties of the CNTs pave the way to CNT-based bioelectrochemistry and to bioelectronic nanodevices, such as electrochemical sensors and biosensors. The electrochemistry and bioelectrochemistry of the CNTs are summarized and discussed, along with some common methods for CNT electrode preparation and some recent advances in the rational functionalization of the CNTs for electroanalytical applications.

274 citations

Journal ArticleDOI
01 Sep 2004-Langmuir
TL;DR: Electrochemical studies indicate that the LBL assembled MWNT films possess a remarkable electrocatalytic activity toward O2 reduction in alkaline media, which suggests the potential application of the MWNT film for constructing an efficient alkaline air electrode for energy conversions.
Abstract: Multilayer films of shortened multiwalled carbon nanotubes (MWNTs) are homogeneously and stably assembled on glassy carbon electrodes with the layer-by-layer (LBL) method, based on electrostatic interaction of positively charged poly(diallyldimethylammonium chloride) and negatively charged and shortened MWNTs. The film assembly and electrochemical property as well as the electrocatalytic activity toward O2 reduction of the MWNT multilayer film are studied. Scanning electron microscopy, the quartz crystal microbalance technique, ultraviolet-visible-near-infrared spectroscopy, and cyclic voltammetry are used for characterization of film assembly. Experimental results revealed that film growth is uniform, almost with the same coverage of the MWNTs in each layer, and that the assembled MWNTs are mainly in the form of small bundles or single tubes on the electrodes. Electrochemical studies indicate that the LBL assembled MWNT films possess a remarkable electrocatalytic activity toward O2 reduction in alkaline media. This property, combined with the well-dispersed, porous and conductive features of the MWNT film illustrated with the LBL method, suggests the potential application of the MWNT film for constructing an efficient alkaline air electrode for energy conversions.

253 citations

Journal ArticleDOI
Kuanping Gong1, Ping Yu1, Lei Su1, and Shaoxiang Xiong1, Lanqun Mao1 
TL;DR: In this paper, a facile and effective polymer-assisted route to synthesis of structurally uniform and electrochemically active manganese dioxide/multiwalled carbon nanotube (MnO2/MWNT) nanocomposite was described.
Abstract: This study describes a facile and effective polymer-assisted route to synthesis of structurally uniform and electrochemically active manganese dioxide/multiwalled carbon nanotube (MnO2/MWNT) nanocomposite and investigates the electrocatalytic activity of the synthetic MnO2/MWNT nanocomposite toward the reduction of oxygen in alkaline media. Poly(sodium 4-styrene sulfonate) (PSS) used here as the polymer to assist the synthesis of the nanocomposite serves as a bifunctional molecule both for solubilizing MWNTs into an aqueous solution and for tethering Mn2+ precursor onto MWNT surfaces to facilitate the follow-up chemical deposition of MnO2 to eventually on-spot grow MnO2 nanoparticles onto MWNTs. The synthetic MnO2/MWNT nanocomposite has a uniform surface distribution and large coverage of MnO2 nanoparticles onto MWNTs, which was characterized with scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and cyclic voltammetry (CV). The synthetic MnO2/MWNT nanoco...

164 citations


Cited by
More filters
Journal ArticleDOI
06 Feb 2009-Science
TL;DR: It is reported that vertically aligned nitrogen-containing carbon nanotubes (VA-NCNTs) can act as a metal-free electrode with a much better electrocatalytic activity, long-term operation stability, and tolerance to crossover effect than platinum for oxygen reduction in alkaline fuel cells.
Abstract: The large-scale practical application of fuel cells will be difficult to realize if the expensive platinum-based electrocatalysts for oxygen reduction reactions (ORRs) cannot be replaced by other efficient, low-cost, and stable electrodes. Here, we report that vertically aligned nitrogen-containing carbon nanotubes (VA-NCNTs) can act as a metal-free electrode with a much better electrocatalytic activity, long-term operation stability, and tolerance to crossover effect than platinum for oxygen reduction in alkaline fuel cells. In air-saturated 0.1 molar potassium hydroxide, we observed a steady-state output potential of –80 millivolts and a current density of 4.1 milliamps per square centimeter at –0.22 volts, compared with –85 millivolts and 1.1 milliamps per square centimeter at –0.20 volts for a platinum-carbon electrode. The incorporation of electron-accepting nitrogen atoms in the conjugated nanotube carbon plane appears to impart a relatively high positive charge density on adjacent carbon atoms. This effect, coupled with aligning the NCNTs, provides a four-electron pathway for the ORR on VA-NCNTs with a superb performance.

6,370 citations

Journal ArticleDOI
TL;DR: Department of Materials Science, University of Patras, Greece, Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, and Dipartimento di Scienze Farmaceutiche, Universita di Trieste, Piazzale Europa 1, 34127 Triesteadays.
Abstract: Department of Materials Science, University of Patras, 26504 Rio Patras, Greece, Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vass. Constantinou Avenue, 116 35 Athens, Greece, Institut de Biologie Moleculaire et Cellulaire, UPR9021 CNRS, Immunologie et Chimie Therapeutiques, 67084 Strasbourg, France, and Dipartimento di Scienze Farmaceutiche, Universita di Trieste, Piazzale Europa 1, 34127 Trieste, Italy

3,886 citations

Journal ArticleDOI
15 Feb 2010-ACS Nano
TL;DR: The resultant N-graphene was demonstrated to act as a metal-free electrode with a much better electrocatalytic activity, long-term operation stability, and tolerance to crossover effect than platinum for oxygen reduction via a four-electron pathway in alkaline fuel cells.
Abstract: Nitrogen-doped graphene (N-graphene) was synthesized by chemical vapor deposition of methane in the presence of ammonia. The resultant N-graphene was demonstrated to act as a metal-free electrode with a much better electrocatalytic activity, long-term operation stability, and tolerance to crossover effect than platinum for oxygen reduction via a four-electron pathway in alkaline fuel cells. To the best of our knowledge, this is the first report on the use of graphene and its derivatives as metal-free catalysts for oxygen reduction. The important role of N-doping to oxygen reduction reaction (ORR) can be applied to various carbon materials for the development of other metal-free efficient ORR catalysts for fuel cell applications, even new catalytic materials for applications beyond fuel cells.

3,604 citations

Journal ArticleDOI
TL;DR: Graphene has received increasing attention due to its unique physicochemical properties (high surface area, excellent conductivity, high mechanical strength, and ease of functionalization and mass production).
Abstract: Graphene, emerging as a true 2-dimensional material, has received increasing attention due to its unique physicochemical properties (high surface area, excellent conductivity, high mechanical strength, and ease of functionalization and mass production). This article selectively reviews recent advances in graphene-based electrochemical sensors and biosensors. In particular, graphene for direct electrochemistry of enzyme, its electrocatalytic activity toward small biomolecules (hydrogen peroxide, NADH, dopamine, etc.), and graphenebased enzyme biosensors have been summarized in more detail; Graphene-based DNA sensing and environmental analysis have been discussed. Future perspectives in this rapidly developing field are also discussed.

2,866 citations

Journal ArticleDOI
19 May 2011-ACS Nano
TL;DR: A facile, catalyst-free thermal annealing approach for large-scale synthesis of NG using low-cost industrial material melamine as the nitrogen source is proposed, which can completely avoid the contamination of transition metal catalysts, and thus the intrinsic catalytic performance of pure NGs can be investigated.
Abstract: The electronic and chemical properties of graphene can be modulated by chemical doping foreign atoms and functional moieties. The general approach to the synthesis of nitrogen-doped graphene (NG), such as chemical vapor deposition (CVD) performed in gas phases, requires transitional metal catalysts which could contaminate the resultant products and thus affect their properties. In this paper, we propose a facile, catalyst-free thermal annealing approach for large-scale synthesis of NG using low-cost industrial material melamine as the nitrogen source. This approach can completely avoid the contamination of transition metal catalysts, and thus the intrinsic catalytic performance of pure NGs can be investigated. Detailed X-ray photoelectron spectrum analysis of the resultant products shows that the atomic percentage of nitrogen in doped graphene samples can be adjusted up to 10.1%. Such a high doping level has not been reported previously. High-resolution N1s spectra reveal that the as-made NG mainly contai...

2,242 citations