scispace - formally typeset
Search or ask a question
Author

Kudzai Farai Kaseke

Bio: Kudzai Farai Kaseke is an academic researcher from Indiana University – Purdue University Indianapolis. The author has contributed to research in topics: Dew & Precipitation. The author has an hindex of 17, co-authored 24 publications receiving 557 citations. Previous affiliations of Kudzai Farai Kaseke include University of Indianapolis & Stellenbosch University.

Papers
More filters
Journal ArticleDOI
TL;DR: This study uses multiple stable isotopes (2H, 18O, and 17O) to show that fog and dew have multiple origins and that groundwater in drylands can be recycled via evapotranspiration and redistributed to the upper soil profile as nonrainfall water.
Abstract: Dryland ecosystems cover 40% of the total land surface on Earth and are defined broadly as zones where precipitation is considerably less than the potential evapotranspiration. Nonrainfall waters (for example, fog and dew) are the least-studied and least-characterized components of the hydrological cycle, although they supply critical amounts of water for dryland ecosystems. The sources of nonrainfall waters are largely unknown for most systems. In addition, most field and modeling studies tend to consider all nonrainfall inputs as a single category because of technical constraints, which hinders prediction of dryland responses to future warming conditions. This study uses multiple stable isotopes ( 2 H, 18 O, and 17 O) to show that fog and dew have multiple origins and that groundwater in drylands can be recycled via evapotranspiration and redistributed to the upper soil profile as nonrainfall water. Surprisingly, the non–ocean-derived (locally generated) fog accounts for more than half of the total fog events, suggesting a potential shift from advection-dominated fog to radiation-dominated fog in the fog zone of the Namib Desert. This shift will have implications on the flora and fauna distribution in this fog-dependent system. We also demonstrate that fog and dew can be differentiated on the basis of the dominant fractionation (equilibrium and kinetic) processes during their formation using the 17 O- 18 O relationship. Our results are of great significance in an era of global climate change where the importance of nonrainfall water increases because rainfall is predicted to decline in many dryland ecosystems.

87 citations

Journal ArticleDOI
TL;DR: In this paper, the authors summarized recent advances investigating the effects of non-rainfall water inputs on various ecosystem functions, including vegetation-water relations, biogeochemical cycling, groundwater recharge, as well as reptile and invertebrate adaptations.
Abstract: Non-rainfall water inputs (NRWIs) are the least studied hydrological components in most ecosystems. These NRWI components potentially play an important role in ecosystem dynamics and are particularly important for water-limited systems. In this review, we summarized recent advances investigating the effects of NRWIs on various ecosystem functions, including vegetation-water relations, biogeochemical cycling, groundwater recharge, as well as reptile and invertebrate adaptations. We also identified key knowledge gaps such as the mechanisms of NRWIs alleviating vegetation water stress, sources of the NRWI components and their quantitative contributions to ecosystem functions. To better predict the ecosystem responses to climate change especially in drylands, a better understanding and quantification of NRWI contributions is essential. WIREs Water 2017, 4:e1179. doi: 10.1002/wat2.1179 For further resources related to this article, please visit the WIREs website.

86 citations

Journal ArticleDOI
TL;DR: This study provides a unique precipitation isotope dataset for mid-latitudes and provides a more mechanistic understanding of precipitation formation mechanisms in this region.
Abstract: Stable isotopes of hydrogen and oxygen (δ2H, δ18O and δ17O) can be used as natural tracers to improve our understanding of hydrological and meteorological processes. Studies of precipitation isotopes, especially 17O-excess observations, are extremely limited in the mid-latitudes. To fill this knowledge gap, we measured δ2H, δ18O and δ17O of event-based precipitation samples collected from Indianapolis, Indiana, USA over two years and investigated the influence of meteorological factors on precipitation isotope variations. The results showed that the daily temperature played a major role in controlling the isotope variations. Precipitation experienced kinetic fractionation associated with evaporation at the moisture source in the spring and summer and for rainfall, while snowfall, as well as precipitation in the fall and winter, were mainly affected by equilibrium fractionation. The 17O-excess of both rainfall and snowfall were not affected by local meteorological factors over the whole study period. At the seasonal scale, it was the case only for the spring. Therefore, 17O-excess of rainfall, snowfall and the spring precipitation could be considered as tracers of evaporative conditions at the moisture source. This study provides a unique precipitation isotope dataset for mid-latitudes and provides a more mechanistic understanding of precipitation formation mechanisms in this region.

68 citations

Journal ArticleDOI
TL;DR: In this paper, the authors measured 0.1% of incident sunlight as the lower limit for hypolithic growth on quartz rocks in the Namib and found that uncolonized ventral rock surfaces were limited by light rather than moisture.
Abstract: [1] Hypolithic microbial communities are productive niches in deserts worldwide, but many facets of their basic ecology remain unknown. The Namib Desert is an important site for hypolith study because it has abundant quartz rocks suitable for colonization and extends west to east across a transition from fog- to rain-dominated moisture sources. We show that fog sustains and impacts hypolithic ecology in several ways, as follows: (1) fog effectively replaces rainfall in the western zone of the central Namib to enable high (≥95%) hypolithic abundance at landscape (1–10 km) and larger scales; and (2) high water availability, through fog (western zone) and/or rainfall (eastern zone), results in smaller size-class rocks being colonized (mean 6.3 ± 1.2 cm) at higher proportions (e.g., 98% versus approximately 3%) than in previously studied hyperarid deserts. We measured 0.1% of incident sunlight as the lower limit for hypolithic growth on quartz rocks in the Namib and found that uncolonized ventral rock surfaces were limited by light rather than moisture. In situ monitoring showed that although rainfall supplied more liquid water (36 h) per event than fog (mean 4 h), on an equivalent annual basis, fog provided nearly twice as much liquid water as rainfall to the hypolithic zone. Hypolithic abundance reaches 100% at a mean annual precipitation (MAP) of approximately 40–60 mm, but at a much lower MAP (approximately 25 mm) when moisture from fog is available.

60 citations

Journal ArticleDOI
TL;DR: In this article, a continuous 6-year (2008-2013) daily record of ground observations collected from Weltevrede Farm at the edge of the Namib Desert was used to evaluate TRMM Multi-satellite Precipitation Analysis (TMPA, 0.25° resolution) daily rainfall estimates.

38 citations


Cited by
More filters
01 Apr 2012
TL;DR: In this article, in situ soil moisture data from more than 200 stations located in Africa, Australia, Europe and the United States are used to determine the reliability of three soil moisture products, one analysis from the ECMWF (European Centre for Medium-Range Weather Forecasts) numerical weather prediction system (SM-DAS-2) and two remotely sensed soil moisture product, namely ASCAT (Advanced scatterometer) and SMOS (Soil Moisture Ocean Salinity).
Abstract: In situ soil moisture data from more than 200 stations located in Africa, Australia, Europe and the United States are used to determine the reliability of three soil moisture products, one analysis from the ECMWF (European Centre for Medium-Range Weather Forecasts) numerical weather prediction system (SM-DAS-2) and two remotely sensed soil moisture products, namely ASCAT (Advanced scatterometer) and SMOS (Soil Moisture Ocean Salinity). SM-DAS-2 is produced offline at ECMWF and relies on an advanced surface data assimilation system (Extended Kalman Filter) used to optimally combine conventional observations with satellite measurements. ASCAT remotely sensed surface soil moisture is provided in near real time by EUMETSAT. At ECMWF, ASCAT is used for soil moisture analyses in SM-DAS-2, also. Finally the SMOS remotely sensed soil moisture data level two product developed at CESBIO is used. Evaluation of the times series as well as of the anomaly values, shows good performances of the three products to capture surface soil moisture annual cycle and short term variability. Correlations with in situ data are very satisfactory over most of the investigated sites located in contrasted biomes and climate conditions with averaged values of 0.70 for SM-DAS-2, 0.53 for ASCAT and 0.54 for SMOS. Although radio frequency interference disturbs the natural microwave emission of the Earth observed by SMOS in several parts of the world, hence the soil moisture retrieval, performances of SMOS over Australia are very encouraging.

389 citations

25 May 2016
TL;DR: In this paper, the authors collected data from peer-reviewed publications between 1980 and 2015 which examined maize and wheat yield responses to drought using field experiments and performed unweighted analysis using the log response ratio to calculate the bootstrapped confidence limits of yield responses and calculated drought sensitivities with regards to those covarying factors.
Abstract: Drought has been a major cause of agricultural disaster, yet how it affects the vulnerability of maize and wheat production in combination with several co-varying factors (i.e., phenological phases, agro-climatic regions, soil texture) remains unclear. Using a data synthesis approach, this study aims to better characterize the effects of those co-varying factors with drought and to provide critical information on minimizing yield loss. We collected data from peer-reviewed publications between 1980 and 2015 which examined maize and wheat yield responses to drought using field experiments. We performed unweighted analysis using the log response ratio to calculate the bootstrapped confidence limits of yield responses and calculated drought sensitivities with regards to those co-varying factors. Our results showed that yield reduction varied with species, with wheat having lower yield reduction (20.6%) compared to maize (39.3%) at approximately 40% water reduction. Maize was also more sensitive to drought than wheat, particularly during reproductive phase and equally sensitive in the dryland and non-dryland regions. While no yield difference was observed among regions or different soil texture, wheat cultivation in the dryland was more prone to yield loss than in the non-dryland region. Informed by these results, we discuss potential causes and possible approaches that may minimize drought impacts.

288 citations

Journal ArticleDOI
TL;DR: This review examines the microbial communities of hot desert terrestrial biotopes (including soils, cryptic and refuge niches and plant-root-associated microbes) and the processes that govern their assembly and the possible effects of global climate change on hot desert microbial communities and the resulting feedback mechanisms.
Abstract: A significant proportion of the Earth's surface is desert or in the process of desertification. The extreme environmental conditions that characterize these areas result in a surface that is essentially barren, with a limited range of higher plants and animals. Microbial communities are probably the dominant drivers of these systems, mediating key ecosystem processes. In this review, we examine the microbial communities of hot desert terrestrial biotopes (including soils, cryptic and refuge niches and plant-root-associated microbes) and the processes that govern their assembly. We also assess the possible effects of global climate change on hot desert microbial communities and the resulting feedback mechanisms. We conclude by discussing current gaps in our understanding of the microbiology of hot deserts and suggest fruitful avenues for future research.

269 citations