scispace - formally typeset
Search or ask a question
Author

Kui Jia

Bio: Kui Jia is an academic researcher from South China University of Technology. The author has contributed to research in topics: Computer science & Point cloud. The author has an hindex of 37, co-authored 141 publications receiving 8258 citations. Previous affiliations of Kui Jia include Agency for Science, Technology and Research & University of Macau.


Papers
More filters
Journal ArticleDOI
TL;DR: DehazeNet as discussed by the authors adopts convolutional neural network-based deep architecture, whose layers are specially designed to embody the established assumptions/priors in image dehazing.
Abstract: Single image haze removal is a challenging ill-posed problem. Existing methods use various constraints/priors to get plausible dehazing solutions. The key to achieve haze removal is to estimate a medium transmission map for an input hazy image. In this paper, we propose a trainable end-to-end system called DehazeNet, for medium transmission estimation. DehazeNet takes a hazy image as input, and outputs its medium transmission map that is subsequently used to recover a haze-free image via atmospheric scattering model. DehazeNet adopts convolutional neural network-based deep architecture, whose layers are specially designed to embody the established assumptions/priors in image dehazing. Specifically, the layers of Maxout units are used for feature extraction, which can generate almost all haze-relevant features. We also propose a novel nonlinear activation function in DehazeNet, called bilateral rectified linear unit, which is able to improve the quality of recovered haze-free image. We establish connections between the components of the proposed DehazeNet and those used in existing methods. Experiments on benchmark images show that DehazeNet achieves superior performance over existing methods, yet keeps efficient and easy to use.

1,880 citations

Journal ArticleDOI
TL;DR: PCANet as discussed by the authors is a simple deep learning network for image classification which comprises only the very basic data processing components: cascaded principal component analysis (PCA), binary hashing, and block-wise histograms.
Abstract: In this work, we propose a very simple deep learning network for image classification which comprises only the very basic data processing components: cascaded principal component analysis (PCA), binary hashing, and block-wise histograms. In the proposed architecture, PCA is employed to learn multistage filter banks. It is followed by simple binary hashing and block histograms for indexing and pooling. This architecture is thus named as a PCA network (PCANet) and can be designed and learned extremely easily and efficiently. For comparison and better understanding, we also introduce and study two simple variations to the PCANet, namely the RandNet and LDANet. They share the same topology of PCANet but their cascaded filters are either selected randomly or learned from LDA. We have tested these basic networks extensively on many benchmark visual datasets for different tasks, such as LFW for face verification, MultiPIE, Extended Yale B, AR, FERET datasets for face recognition, as well as MNIST for hand-written digits recognition. Surprisingly, for all tasks, such a seemingly naive PCANet model is on par with the state of the art features, either prefixed, highly hand-crafted or carefully learned (by DNNs). Even more surprisingly, it sets new records for many classification tasks in Extended Yale B, AR, FERET datasets, and MNIST variations. Additional experiments on other public datasets also demonstrate the potential of the PCANet serving as a simple but highly competitive baseline for texture classification and object recognition.

1,157 citations

Journal ArticleDOI
TL;DR: Surprisingly, for all tasks, such a seemingly naive PCANet model is on par with the state-of-the-art features either prefixed, highly hand-crafted, or carefully learned [by deep neural networks (DNNs)].
Abstract: In this paper, we propose a very simple deep learning network for image classification that is based on very basic data processing components: 1) cascaded principal component analysis (PCA); 2) binary hashing; and 3) blockwise histograms. In the proposed architecture, the PCA is employed to learn multistage filter banks. This is followed by simple binary hashing and block histograms for indexing and pooling. This architecture is thus called the PCA network (PCANet) and can be extremely easily and efficiently designed and learned. For comparison and to provide a better understanding, we also introduce and study two simple variations of PCANet: 1) RandNet and 2) LDANet. They share the same topology as PCANet, but their cascaded filters are either randomly selected or learned from linear discriminant analysis. We have extensively tested these basic networks on many benchmark visual data sets for different tasks, including Labeled Faces in the Wild (LFW) for face verification; the MultiPIE, Extended Yale B, AR, Facial Recognition Technology (FERET) data sets for face recognition; and MNIST for hand-written digit recognition. Surprisingly, for all tasks, such a seemingly naive PCANet model is on par with the state-of-the-art features either prefixed, highly hand-crafted, or carefully learned [by deep neural networks (DNNs)]. Even more surprisingly, the model sets new records for many classification tasks on the Extended Yale B, AR, and FERET data sets and on MNIST variations. Additional experiments on other public data sets also demonstrate the potential of PCANet to serve as a simple but highly competitive baseline for texture classification and object recognition.

1,034 citations

Journal ArticleDOI
TL;DR: This paper proposes a trainable end-to-end system called DehazeNet, for medium transmission estimation, which takes a hazy image as input, and outputs its medium transmission map that is subsequently used to recover a haze-free image via atmospheric scattering model.
Abstract: Single image haze removal is a challenging ill-posed problem. Existing methods use various constraints/priors to get plausible dehazing solutions. The key to achieve haze removal is to estimate a medium transmission map for an input hazy image. In this paper, we propose a trainable end-to-end system called DehazeNet, for medium transmission estimation. DehazeNet takes a hazy image as input, and outputs its medium transmission map that is subsequently used to recover a haze-free image via atmospheric scattering model. DehazeNet adopts Convolutional Neural Networks (CNN) based deep architecture, whose layers are specially designed to embody the established assumptions/priors in image dehazing. Specifically, layers of Maxout units are used for feature extraction, which can generate almost all haze-relevant features. We also propose a novel nonlinear activation function in DehazeNet, called Bilateral Rectified Linear Unit (BReLU), which is able to improve the quality of recovered haze-free image. We establish connections between components of the proposed DehazeNet and those used in existing methods. Experiments on benchmark images show that DehazeNet achieves superior performance over existing methods, yet keeps efficient and easy to use.

837 citations

Proceedings ArticleDOI
07 Dec 2015
TL;DR: In this article, a factorized spatio-temporal convolutional networks (FstCN) is proposed to factorize the original 3D convolution kernel learning as a sequential process of learning 2D spatial kernels in the lower layers, followed by learning 1D temporal kernel in the upper layers.
Abstract: Human actions in video sequences are three-dimensional (3D) spatio-temporal signals characterizing both the visual appearance and motion dynamics of the involved humans and objects. Inspired by the success of convolutional neural networks (CNN) for image classification, recent attempts have been made to learn 3D CNNs for recognizing human actions in videos. However, partly due to the high complexity of training 3D convolution kernels and the need for large quantities of training videos, only limited success has been reported. This has triggered us to investigate in this paper a new deep architecture which can handle 3D signals more effectively. Specifically, we propose factorized spatio-temporal convolutional networks (FstCN) that factorize the original 3D convolution kernel learning as a sequential process of learning 2D spatial kernels in the lower layers (called spatial convolutional layers), followed by learning 1D temporal kernels in the upper layers (called temporal convolutional layers). We introduce a novel transformation and permutation operator to make factorization in FstCN possible. Moreover, to address the issue of sequence alignment, we propose an effective training and inference strategy based on sampling multiple video clips from a given action video sequence. We have tested FstCN on two commonly used benchmark datasets (UCF-101 and HMDB-51). Without using auxiliary training videos to boost the performance, FstCN outperforms existing CNN based methods and achieves comparable performance with a recent method that benefits from using auxiliary training videos.

473 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Zhang et al. as discussed by the authors proposed a deep learning method for single image super-resolution (SR), which directly learns an end-to-end mapping between the low/high-resolution images.
Abstract: We propose a deep learning method for single image super-resolution (SR). Our method directly learns an end-to-end mapping between the low/high-resolution images. The mapping is represented as a deep convolutional neural network (CNN) that takes the low-resolution image as the input and outputs the high-resolution one. We further show that traditional sparse-coding-based SR methods can also be viewed as a deep convolutional network. But unlike traditional methods that handle each component separately, our method jointly optimizes all layers. Our deep CNN has a lightweight structure, yet demonstrates state-of-the-art restoration quality, and achieves fast speed for practical on-line usage. We explore different network structures and parameter settings to achieve trade-offs between performance and speed. Moreover, we extend our network to cope with three color channels simultaneously, and show better overall reconstruction quality.

6,122 citations

Book ChapterDOI
06 Sep 2014
TL;DR: This work proposes a deep learning method for single image super-resolution (SR) that directly learns an end-to-end mapping between the low/high-resolution images and shows that traditional sparse-coding-based SR methods can also be viewed as a deep convolutional network.
Abstract: We propose a deep learning method for single image super-resolution (SR). Our method directly learns an end-to-end mapping between the low/high-resolution images. The mapping is represented as a deep convolutional neural network (CNN) [15] that takes the low-resolution image as the input and outputs the high-resolution one. We further show that traditional sparse-coding-based SR methods can also be viewed as a deep convolutional network. But unlike traditional methods that handle each component separately, our method jointly optimizes all layers. Our deep CNN has a lightweight structure, yet demonstrates state-of-the-art restoration quality, and achieves fast speed for practical on-line usage.

4,445 citations

01 Jan 2006

3,012 citations

Book ChapterDOI
08 Oct 2016
TL;DR: Temporal Segment Networks (TSN) as discussed by the authors combine a sparse temporal sampling strategy and video-level supervision to enable efficient and effective learning using the whole action video, which obtains the state-of-the-art performance on the datasets of HMDB51 and UCF101.
Abstract: Deep convolutional networks have achieved great success for visual recognition in still images. However, for action recognition in videos, the advantage over traditional methods is not so evident. This paper aims to discover the principles to design effective ConvNet architectures for action recognition in videos and learn these models given limited training samples. Our first contribution is temporal segment network (TSN), a novel framework for video-based action recognition. which is based on the idea of long-range temporal structure modeling. It combines a sparse temporal sampling strategy and video-level supervision to enable efficient and effective learning using the whole action video. The other contribution is our study on a series of good practices in learning ConvNets on video data with the help of temporal segment network. Our approach obtains the state-the-of-art performance on the datasets of HMDB51 (\( 69.4\,\% \)) and UCF101 (\( 94.2\,\% \)). We also visualize the learned ConvNet models, which qualitatively demonstrates the effectiveness of temporal segment network and the proposed good practices (Models and code at https://github.com/yjxiong/temporal-segment-networks).

2,778 citations