scispace - formally typeset
Search or ask a question
Author

Kui-Qing Peng

Bio: Kui-Qing Peng is an academic researcher from Beijing Normal University. The author has contributed to research in topics: Silicon & Etching (microfabrication). The author has an hindex of 28, co-authored 49 publications receiving 7903 citations. Previous affiliations of Kui-Qing Peng include Tsinghua University & City University of Hong Kong.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the nanoelectrochemistry of silver nanowires in an aqueous HF solution containing silver nitrate was used to construct large-area silicon nanowire arrays.
Abstract: Large-area silicon nanowire arrays have been prepared on a silicon wafer without the use of a template The simple method, which can be carried out near room temperature, involves the nanoelectrochemistry of silver nanowires in an aqueous HF solution containing silver nitrate This technique may be generally applicable to other semiconductors and metals The Figure shows nanodendritic silicon wires

734 citations

Journal ArticleDOI
TL;DR: In this article, a novel strategy for preparing large-area oriented silicon nanowire arrays on silicon substrates at near room temperature by localized chemical etching is presented, which is based on metal-induced (either by Ag or Au) excessive local oxidation and dissolution of a silicon substrate in an aqueous fluoride solution.
Abstract: A novel strategy for preparing large-area, oriented silicon nanowire (SiNW) arrays on silicon substrates at near room temperature by localized chemical etching is presented. The strategy is based on metal-induced (either by Ag or Au) excessive local oxidation and dissolution of a silicon substrate in an aqueous fluoride solution. The density and size of the as-prepared SiNWs depend on the distribution of the patterned metal particles on the silicon surface. High-density metal particles facilitate the formation of silicon nanowires. Well-separated, straight nanoholes are dug along the Si block when metal particles are well dispersed with a large space between them. The etching technique is weakly dependent on the orientation and doping type of the silicon wafer. Therefore, SiNWs with desired axial crystallographic orientations and doping characteristics are readily obtained. Detailed scanning electron microscopy observations reveal the formation process of the silicon nanowires, and a reasonable mechanism is proposed on the basis of the electrochemistry of silicon and the experimental results.

650 citations

Journal ArticleDOI
TL;DR: The recent developments in the utilization of SiNWs for PV applications, the relationship between SiNW-based PV device structure and performance, and the challenges to obtaining high-performance cost-effective solar cells are reviewed.
Abstract: Semiconductor nanowires are attracting intense interest as a promising material for solar energy conversion for the new-generation photovoltaic (PV) technology. In particular, silicon nanowires (SiNWs) are under active investigation for PV applications because they offer novel approaches for solar-to-electric energy conversion leading to high-efficiency devices via simple manufacturing. This article reviews the recent developments in the utilization of SiNWs for PV applications, the relationship between SiNW-based PV device structure and performance, and the challenges to obtaining high-performance cost-effective solar cells.

580 citations

Journal ArticleDOI
TL;DR: In this article, a facile fabricating method has been established for large-area uniform silicon nanowires arrays, which were obtained by single crystals and epitaxial on the substrate.
Abstract: A facile fabricating method has been established for large-area uniform silicon nanowires arrays All silicon nanowires obtained were single crystals and epitaxial on the substrate Six kinds of silicon wafers with different types, surface orientations, and doping levels were utilized as starting materials With the catalysis of silver nanoparticles, room-temperature mild chemical etching was conducted in aqueous solution of hydrofluoric acid (HF) and hydrogen peroxide (H2O2) The corresponding silicon nanowires arrays with different morphologies were obtained The silicon nanowires possess the same type and same doping level of the starting wafer All nanowires on the substrate have the same orientation For instance, both (100)- and (111)-oriented p-type wafers produced silicon nanowires in the (100) direction For every kind of silicon wafer, the effect of etching conditions, such as components of etchant, temperature, and time, were systemically investigated This is an appropriate method to produce a

527 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The theoretical charge capacity for silicon nanowire battery electrodes is achieved and maintained a discharge capacity close to 75% of this maximum, with little fading during cycling.
Abstract: There is great interest in developing rechargeable lithium batteries with higher energy capacity and longer cycle life for applications in portable electronic devices, electric vehicles and implantable medical devices. Silicon is an attractive anode material for lithium batteries because it has a low discharge potential and the highest known theoretical charge capacity (4,200 mAh g(-1); ref. 2). Although this is more than ten times higher than existing graphite anodes and much larger than various nitride and oxide materials, silicon anodes have limited applications because silicon's volume changes by 400% upon insertion and extraction of lithium which results in pulverization and capacity fading. Here, we show that silicon nanowire battery electrodes circumvent these issues as they can accommodate large strain without pulverization, provide good electronic contact and conduction, and display short lithium insertion distances. We achieved the theoretical charge capacity for silicon anodes and maintained a discharge capacity close to 75% of this maximum, with little fading during cycling.

6,104 citations

Journal ArticleDOI
10 Jan 2008-Nature
TL;DR: In this article, the authors report the electrochemical synthesis of large-area, wafer-scale arrays of rough Si nanowires that are 20-300 nm in diameter.
Abstract: Approximately 90 per cent of the world's power is generated by heat engines that use fossil fuel combustion as a heat source and typically operate at 30-40 per cent efficiency, such that roughly 15 terawatts of heat is lost to the environment. Thermoelectric modules could potentially convert part of this low-grade waste heat to electricity. Their efficiency depends on the thermoelectric figure of merit ZT of their material components, which is a function of the Seebeck coefficient, electrical resistivity, thermal conductivity and absolute temperature. Over the past five decades it has been challenging to increase ZT > 1, since the parameters of ZT are generally interdependent. While nanostructured thermoelectric materials can increase ZT > 1 (refs 2-4), the materials (Bi, Te, Pb, Sb, and Ag) and processes used are not often easy to scale to practically useful dimensions. Here we report the electrochemical synthesis of large-area, wafer-scale arrays of rough Si nanowires that are 20-300 nm in diameter. These nanowires have Seebeck coefficient and electrical resistivity values that are the same as doped bulk Si, but those with diameters of about 50 nm exhibit 100-fold reduction in thermal conductivity, yielding ZT = 0.6 at room temperature. For such nanowires, the lattice contribution to thermal conductivity approaches the amorphous limit for Si, which cannot be explained by current theories. Although bulk Si is a poor thermoelectric material, by greatly reducing thermal conductivity without much affecting the Seebeck coefficient and electrical resistivity, Si nanowire arrays show promise as high-performance, scalable thermoelectric materials.

3,611 citations

Journal Article
TL;DR: Electrochemical synthesis of large-area, wafer-scale arrays of rough Si nanowires that are 20–300 nm in diameter show promise as high-performance, scalable thermoelectric materials.
Abstract: Approximately 90 per cent of the world’s power is generated by heat engines that use fossil fuel combustion as a heat source and typically operate at 30–40 per cent efficiency, such that roughly 15 terawatts of heat is lost to the environment. Thermoelectric modules could potentially convert part of this low-grade waste heat to electricity. Their efficiency depends on the thermoelectric figure of merit ZT of their material components, which is a function of the Seebeck coefficient, electrical resistivity, thermal conductivity and absolute temperature. Over the past five decades it has been challenging to increase ZT > 1, since the parameters of ZT are generally interdependent. While nanostructured thermoelectric materials can increase ZT > 1 (refs 2–4), the materials (Bi, Te, Pb, Sb, and Ag) and processes used are not often easy to scale to practically useful dimensions. Here we report the electrochemical synthesis of large-area, wafer-scale arrays of rough Si nanowires that are 20–300 nm in diameter. These nanowires have Seebeck coefficient and electrical resistivity values that are the same as doped bulk Si, but those with diameters of about 50 nm exhibit 100-fold reduction in thermal conductivity, yielding ZT = 0.6 at room temperature. For such nanowires, the lattice contribution to thermal conductivity approaches the amorphous limit for Si, which cannot be explained by current theories. Although bulk Si is a poor thermoelectric material, by greatly reducing thermal conductivity without much affecting the Seebeck coefficient and electrical resistivity, Si nanowire arrays show promise as high-performance, scalable thermoelectric materials.

2,932 citations

01 Nov 2000
TL;DR: In this paper, the authors compared the power density characteristics of ultracapacitors and batteries with respect to the same charge/discharge efficiency, and showed that the battery can achieve energy densities of 10 Wh/kg or higher with a power density of 1.2 kW/kg.
Abstract: The science and technology of ultracapacitors are reviewed for a number of electrode materials, including carbon, mixed metal oxides, and conducting polymers. More work has been done using microporous carbons than with the other materials and most of the commercially available devices use carbon electrodes and an organic electrolytes. The energy density of these devices is 3¯5 Wh/kg with a power density of 300¯500 W/kg for high efficiency (90¯95%) charge/discharges. Projections of future developments using carbon indicate that energy densities of 10 Wh/kg or higher are likely with power densities of 1¯2 kW/kg. A key problem in the fabrication of these advanced devices is the bonding of the thin electrodes to a current collector such the contact resistance is less than 0.1 cm2. Special attention is given in the paper to comparing the power density characteristics of ultracapacitors and batteries. The comparisons should be made at the same charge/discharge efficiency.

2,437 citations

Journal ArticleDOI
TL;DR: In this paper, three major ways to utilize semiconductor dots in solar cell include (i) metal−semiconductor or Schottky junction photovoltaic cell, (ii) polymer−smiconductor hybrid solar cell, and (iii) quantum dot sensitized solar cell.
Abstract: The emergence of semiconductor nanocrystals as the building blocks of nanotechnology has opened up new ways to utilize them in next generation solar cells. This paper focuses on the recent developments in the utilization of semiconductor quantum dots for light energy conversion. Three major ways to utilize semiconductor dots in solar cell include (i) metal−semiconductor or Schottky junction photovoltaic cell (ii) polymer−semiconductor hybrid solar cell, and (iii) quantum dot sensitized solar cell. Modulation of band energies through size control offers new ways to control photoresponse and photoconversion efficiency of the solar cell. Various strategies to maximize photoinduced charge separation and electron transfer processes for improving the overall efficiency of light energy conversion are discussed. Capture and transport of charge carriers within the semiconductor nanocrystal network to achieve efficient charge separation at the electrode surface remains a major challenge. Directing the future resear...

2,434 citations