scispace - formally typeset
Search or ask a question
Author

Kumar Dharmarajan

Bio: Kumar Dharmarajan is an academic researcher from Yale University. The author has contributed to research in topics: Heart failure & Myocardial infarction. The author has an hindex of 31, co-authored 103 publications receiving 6560 citations. Previous affiliations of Kumar Dharmarajan include Peking Union Medical College & Harvard University.

Papers published on a yearly basis

Papers
More filters
Journal ArticleDOI
23 Nov 2001-Science
TL;DR: Two genes encode ubiquitin ligases that are potential drug targets for the treatment of muscle atrophy, and mice deficient in either MAFbx orMuRF1 were found to be resistant to atrophy.
Abstract: Skeletal muscle adapts to decreases in activity and load by undergoing atrophy. To identify candidate molecular mediators of muscle atrophy, we performed transcript profiling. Although many genes were up-regulated in a single rat model of atrophy, only a small subset was universal in all atrophy models. Two of these genes encode ubiquitin ligases: Muscle RING Finger 1 (MuRF1), and a gene we designate Muscle Atrophy F-box (MAFbx), the latter being a member of the SCF family of E3 ubiquitin ligases. Overexpression of MAFbx in myotubes produced atrophy, whereas mice deficient in either MAFbx or MuRF1 were found to be resistant to atrophy. These proteins are potential drug targets for the treatment of muscle atrophy.

3,174 citations

Journal ArticleDOI
23 Jan 2013-JAMA
TL;DR: Among Medicare fee-for-service beneficiaries hospitalized for HF, acute MI, or pneumonia, 30-day readmissions were frequent throughout the month after hospitalization and resulted from a similar spectrum of readmission diagnoses regardless of age, sex, race, or time after discharge.
Abstract: Importance To better guide strategies intended to reduce high rates of 30-day readmission after hospitalization for heart failure (HF), acute myocardial infarction (MI), or pneumonia, further information is needed about readmission diagnoses, readmission timing, and the relationship of both to patient age, sex, and race. Objective To examine readmission diagnoses and timing among Medicare beneficiaries readmitted within 30 days after hospitalization for HF, acute MI, or pneumonia. Design, Setting, and Patients We analyzed 2007-2009 Medicare fee-for-service claims data to identify patterns of 30-day readmission by patient demographic characteristics and time after hospitalization for HF, acute MI, or pneumonia. Readmission diagnoses were categorized using an aggregated version of the Centers for Medicare & Medicaid Services' Condition Categories. Readmission timing was determined by day after discharge. Main Outcome Measures We examined the percentage of 30-day readmissions occurring on each day (0-30) after discharge; the most common readmission diagnoses occurring during cumulative periods (days 0-3, 0-7, 0-15, and 0-30) and consecutive periods (days 0-3, 4-7, 8-15, and 16-30) after hospitalization; median time to readmission for common readmission diagnoses; and the relationship between patient demographic characteristics and readmission diagnoses and timing. Results From 2007 through 2009, we identified 329 308 30-day readmissions after 1 330 157 HF hospitalizations (24.8% readmitted), 108 992 30-day readmissions after 548 834 acute MI hospitalizations (19.9% readmitted), and 214 239 30-day readmissions after 1 168 624 pneumonia hospitalizations (18.3% readmitted). The proportion of patients readmitted for the same condition was 35.2% after the index HF hospitalization, 10.0% after the index acute MI hospitalization, and 22.4% after the index pneumonia hospitalization. Of all readmissions within 30 days of hospitalization, the majority occurred within 15 days of hospitalization: 61.0%, HF cohort; 67.6%, acute MI cohort; and 62.6%, pneumonia cohort. The diverse spectrum of readmission diagnoses was largely similar in both cumulative and consecutive periods after discharge. Median time to 30-day readmission was 12 days for patients initially hospitalized for HF, 10 days for patients initially hospitalized for acute MI, and 12 days for patients initially hospitalized for pneumonia and was comparable across common readmission diagnoses. Neither readmission diagnoses nor timing substantively varied by age, sex, or race. Conclusion and Relevance Among Medicare fee-for-service beneficiaries hospitalized for HF, acute MI, or pneumonia, 30-day readmissions were frequent throughout the month after hospitalization and resulted from a similar spectrum of readmission diagnoses regardless of age, sex, race, or time after discharge.

910 citations

Journal ArticleDOI
TL;DR: Machine learning methods improved the prediction of readmission after hospitalization for heart failure compared with LR and provided the greatest predictive range in observed readmission rates.
Abstract: Background— The current ability to predict readmissions in patients with heart failure is modest at best. It is unclear whether machine learning techniques that address higher dimensional, nonlinear relationships among variables would enhance prediction. We sought to compare the effectiveness of several machine learning algorithms for predicting readmissions. Methods and Results— Using data from the Telemonitoring to Improve Heart Failure Outcomes trial, we compared the effectiveness of random forests, boosting, random forests combined hierarchically with support vector machines or logistic regression (LR), and Poisson regression against traditional LR to predict 30- and 180-day all-cause readmissions and readmissions because of heart failure. We randomly selected 50% of patients for a derivation set, and a validation set comprised the remaining patients, validated using 100 bootstrapped iterations. We compared C statistics for discrimination and distributions of observed outcomes in risk deciles for predictive range. In 30-day all-cause readmission prediction, the best performing machine learning model, random forests, provided a 17.8% improvement over LR (mean C statistics, 0.628 and 0.533, respectively). For readmissions because of heart failure, boosting improved the C statistic by 24.9% over LR (mean C statistic 0.678 and 0.543, respectively). For 30-day all-cause readmission, the observed readmission rates in the lowest and highest deciles of predicted risk with random forests (7.8% and 26.2%, respectively) showed a much wider separation than LR (14.2% and 16.4%, respectively). Conclusions— Machine learning methods improved the prediction of readmission after hospitalization for heart failure compared with LR and provided the greatest predictive range in observed readmission rates.

233 citations

Journal ArticleDOI
27 Dec 2016-JAMA
TL;DR: Readmission rates for patients at hospitals subject to penalties under the HRRP had greater reductions in readmission rates compared with those at nonpenalized hospitals, and changes were greater for target vs nontarget conditions.
Abstract: Importance Readmission rates declined after announcement of the Hospital Readmission Reduction Program (HRRP), which penalizes hospitals for excess readmissions for acute myocardial infarction (AMI), heart failure (HF), and pneumonia. Objective To compare trends in readmission rates for target and nontarget conditions, stratified by hospital penalty status. Design, Setting, and Participants Retrospective cohort study of Medicare fee-for-service beneficiaries older than 64 years discharged between January 1, 2008, and June 30, 2015, from 2214 penalty hospitals and 1283 nonpenalty hospitals. Difference-interrupted time-series models were used to compare trends in readmission rates by condition and penalty status. Exposure Hospital penalty status or target condition under the HRRP. Main Outcomes and Measures Thirty-day risk adjusted, all-cause unplanned readmission rates for target and nontarget conditions. Results The study included 48 137 102 hospitalizations of 20 351 161 Medicare beneficiaries. In January 2008, the mean readmission rates for AMI, HF, pneumonia, and nontarget conditions were 21.9%, 27.5%, 20.1%, and 18.4%, respectively, at hospitals later subject to financial penalties and 18.7%, 24.2%, 17.4%, and 15.7% at hospitals not subject to penalties. Between January 2008 and March 2010, prior to HRRP announcement, readmission rates were stable across hospitals (except AMI at nonpenalty hospitals). Following announcement of HRRP (March 2010), readmission rates for both target and nontarget conditions declined significantly faster for patients at hospitals later subject to financial penalties compared with those at nonpenalized hospitals (for AMI, additional decrease of −1.24 [95% CI, −1.84 to −0.65] percentage points per year relative to nonpenalty discharges; for HF, −1.25 [95% CI, −1.64 to −0.86]; for pneumonia, −1.37 [95% CI, −1.80 to −0.95]; and for nontarget conditions, −0.27 [95% CI, −0.38 to −0.17]; P P = .004]; for HF, −0.90 [95% CI, −1.18 to −0.62; P P P = .05]; for HF, 0.08 [95% CI, −0.30 to 0.46; P = .67]; for pneumonia, 0.53 [95% CI, 0.13-0.93; P = .01]). After HRRP implementation in October 2012, the rate of change for readmission rates plateaued ( P Conclusions and Relevance Medicare fee-for-service patients at hospitals subject to penalties under the HRRP had greater reductions in readmission rates compared with those at nonpenalized hospitals. Changes were greater for target vs nontarget conditions for patients at the penalized hospitals but not at the other hospitals.

232 citations

Journal ArticleDOI
06 Feb 2015-BMJ
TL;DR: Risk declines slowly for older patients after hospitalization for heart failure, acute myocardial infarction, or pneumonia and is increased for months, but knowledge of absolute risks and their changes over time can be used to better align interventions designed to reduce adverse outcomes after discharge with the highest risk periods for patients.
Abstract: Objective To characterize the absolute risks for older patients of readmission to hospital and death in the year after hospitalization for heart failure, acute myocardial infarction, or pneumonia. Design Retrospective cohort study. Setting 4767 hospitals caring for Medicare fee for service beneficiaries in the United States, 2008-10. Participants More than 3 million Medicare fee for service beneficiaries, aged 65 years or more, surviving hospitalization for heart failure, acute myocardial infarction, or pneumonia. Main outcome measures Daily absolute risks of first readmission to hospital and death for one year after discharge. To illustrate risk trajectories, we identified the time required for risks of readmission to hospital and death to decline 50% from maximum values after discharge; the time required for risks to approach plateau periods of minimal day to day change, defined as 95% reductions in daily changes in risk from maximum daily declines after discharge; and the extent to which risks are higher among patients recently discharged from hospital compared with the general elderly population. Results Within one year of hospital discharge, readmission to hospital and death, respectively, occurred following 67.4% and 35.8% of hospitalizations for heart failure, 49.9% and 25.1% for acute myocardial infarction, and 55.6% and 31.1% for pneumonia. Risk of first readmission had declined 50% by day 38 after hospitalization for heart failure, day 13 after hospitalization for acute myocardial infarction, and day 25 after hospitalization for pneumonia; risk of death declined 50% by day 11, 6, and 10, respectively. Daily change in risk of first readmission to hospital declined 95% by day 45, 38, and 45; daily change in risk of death declined 95% by day 21, 19, and 21. After hospitalization for heart failure, acute myocardial infarction, or pneumonia, the magnitude of the relative risk for hospital admission over the first 90 days was 8, 6, and 6 times greater than that of the general older population; the relative risk of death was 11, 8, and 10 times greater. Conclusions Risk declines slowly for older patients after hospitalization for heart failure, acute myocardial infarction, or pneumonia and is increased for months. Specific risk trajectories vary by discharge diagnosis and outcome. Patients should remain vigilant for deterioration in health for an extended time after discharge. Health providers can use knowledge of absolute risks and their changes over time to better align interventions designed to reduce adverse outcomes after discharge with the highest risk periods for patients.

174 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Authors/Task Force Members: Piotr Ponikowski* (Chairperson) (Poland), Adriaan A. Voors* (Co-Chair person) (The Netherlands), Stefan D. Anker (Germany), Héctor Bueno (Spain), John G. F. Cleland (UK), Andrew J. S. Coats (UK)

13,400 citations

Journal ArticleDOI
TL;DR: WRITING GROUP MEMBERS Emelia J. Benjamin, MD, SCM, FAHA Michael J. Reeves, PhD Matthew Ritchey, PT, DPT, OCS, MPH Carlos J. Jiménez, ScD, SM Lori Chaffin Jordan,MD, PhD Suzanne E. Judd, PhD
Abstract: WRITING GROUP MEMBERS Emelia J. Benjamin, MD, SCM, FAHA Michael J. Blaha, MD, MPH Stephanie E. Chiuve, ScD Mary Cushman, MD, MSc, FAHA Sandeep R. Das, MD, MPH, FAHA Rajat Deo, MD, MTR Sarah D. de Ferranti, MD, MPH James Floyd, MD, MS Myriam Fornage, PhD, FAHA Cathleen Gillespie, MS Carmen R. Isasi, MD, PhD, FAHA Monik C. Jiménez, ScD, SM Lori Chaffin Jordan, MD, PhD Suzanne E. Judd, PhD Daniel Lackland, DrPH, FAHA Judith H. Lichtman, PhD, MPH, FAHA Lynda Lisabeth, PhD, MPH, FAHA Simin Liu, MD, ScD, FAHA Chris T. Longenecker, MD Rachel H. Mackey, PhD, MPH, FAHA Kunihiro Matsushita, MD, PhD, FAHA Dariush Mozaffarian, MD, DrPH, FAHA Michael E. Mussolino, PhD, FAHA Khurram Nasir, MD, MPH, FAHA Robert W. Neumar, MD, PhD, FAHA Latha Palaniappan, MD, MS, FAHA Dilip K. Pandey, MBBS, MS, PhD, FAHA Ravi R. Thiagarajan, MD, MPH Mathew J. Reeves, PhD Matthew Ritchey, PT, DPT, OCS, MPH Carlos J. Rodriguez, MD, MPH, FAHA Gregory A. Roth, MD, MPH Wayne D. Rosamond, PhD, FAHA Comilla Sasson, MD, PhD, FAHA Amytis Towfighi, MD Connie W. Tsao, MD, MPH Melanie B. Turner, MPH Salim S. Virani, MD, PhD, FAHA Jenifer H. Voeks, PhD Joshua Z. Willey, MD, MS John T. Wilkins, MD Jason HY. Wu, MSc, PhD, FAHA Heather M. Alger, PhD Sally S. Wong, PhD, RD, CDN, FAHA Paul Muntner, PhD, MHSc On behalf of the American Heart Association Statistics Committee and Stroke Statistics Subcommittee Heart Disease and Stroke Statistics—2017 Update

7,190 citations

Journal ArticleDOI
TL;DR: The 11th edition of Harrison's Principles of Internal Medicine welcomes Anthony Fauci to its editorial staff, in addition to more than 85 new contributors.
Abstract: The 11th edition of Harrison's Principles of Internal Medicine welcomes Anthony Fauci to its editorial staff, in addition to more than 85 new contributors. While the organization of the book is similar to previous editions, major emphasis has been placed on disorders that affect multiple organ systems. Important advances in genetics, immunology, and oncology are emphasized. Many chapters of the book have been rewritten and describe major advances in internal medicine. Subjects that received only a paragraph or two of attention in previous editions are now covered in entire chapters. Among the chapters that have been extensively revised are the chapters on infections in the compromised host, on skin rashes in infections, on many of the viral infections, including cytomegalovirus and Epstein-Barr virus, on sexually transmitted diseases, on diabetes mellitus, on disorders of bone and mineral metabolism, and on lymphadenopathy and splenomegaly. The major revisions in these chapters and many

6,968 citations

Journal ArticleDOI
TL;DR: March 5, 2019 e1 WRITING GROUP MEMBERS Emelia J. Virani, MD, PhD, FAHA, Chair Elect On behalf of the American Heart Association Council on Epidemiology and Prevention Statistics Committee and Stroke Statistics Subcommittee.
Abstract: March 5, 2019 e1 WRITING GROUP MEMBERS Emelia J. Benjamin, MD, ScM, FAHA, Chair Paul Muntner, PhD, MHS, FAHA, Vice Chair Alvaro Alonso, MD, PhD, FAHA Marcio S. Bittencourt, MD, PhD, MPH Clifton W. Callaway, MD, FAHA April P. Carson, PhD, MSPH, FAHA Alanna M. Chamberlain, PhD Alexander R. Chang, MD, MS Susan Cheng, MD, MMSc, MPH, FAHA Sandeep R. Das, MD, MPH, MBA, FAHA Francesca N. Delling, MD, MPH Luc Djousse, MD, ScD, MPH Mitchell S.V. Elkind, MD, MS, FAHA Jane F. Ferguson, PhD, FAHA Myriam Fornage, PhD, FAHA Lori Chaffin Jordan, MD, PhD, FAHA Sadiya S. Khan, MD, MSc Brett M. Kissela, MD, MS Kristen L. Knutson, PhD Tak W. Kwan, MD, FAHA Daniel T. Lackland, DrPH, FAHA Tené T. Lewis, PhD Judith H. Lichtman, PhD, MPH, FAHA Chris T. Longenecker, MD Matthew Shane Loop, PhD Pamela L. Lutsey, PhD, MPH, FAHA Seth S. Martin, MD, MHS, FAHA Kunihiro Matsushita, MD, PhD, FAHA Andrew E. Moran, MD, MPH, FAHA Michael E. Mussolino, PhD, FAHA Martin O’Flaherty, MD, MSc, PhD Ambarish Pandey, MD, MSCS Amanda M. Perak, MD, MS Wayne D. Rosamond, PhD, MS, FAHA Gregory A. Roth, MD, MPH, FAHA Uchechukwu K.A. Sampson, MD, MBA, MPH, FAHA Gary M. Satou, MD, FAHA Emily B. Schroeder, MD, PhD, FAHA Svati H. Shah, MD, MHS, FAHA Nicole L. Spartano, PhD Andrew Stokes, PhD David L. Tirschwell, MD, MS, MSc, FAHA Connie W. Tsao, MD, MPH, Vice Chair Elect Mintu P. Turakhia, MD, MAS, FAHA Lisa B. VanWagner, MD, MSc, FAST John T. Wilkins, MD, MS, FAHA Sally S. Wong, PhD, RD, CDN, FAHA Salim S. Virani, MD, PhD, FAHA, Chair Elect On behalf of the American Heart Association Council on Epidemiology and Prevention Statistics Committee and Stroke Statistics Subcommittee

5,739 citations

Journal ArticleDOI
Daniel J. Klionsky1, Kotb Abdelmohsen2, Akihisa Abe3, Joynal Abedin4  +2519 moreInstitutions (695)
TL;DR: In this paper, the authors present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macro-autophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes.
Abstract: In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. For example, a key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process versus those that measure flux through the autophagy pathway (i.e., the complete process including the amount and rate of cargo sequestered and degraded). In particular, a block in macroautophagy that results in autophagosome accumulation must be differentiated from stimuli that increase autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. It is worth emphasizing here that lysosomal digestion is a stage of autophagy and evaluating its competence is a crucial part of the evaluation of autophagic flux, or complete autophagy. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. Along these lines, because of the potential for pleiotropic effects due to blocking autophagy through genetic manipulation, it is imperative to target by gene knockout or RNA interference more than one autophagy-related protein. In addition, some individual Atg proteins, or groups of proteins, are involved in other cellular pathways implying that not all Atg proteins can be used as a specific marker for an autophagic process. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular assays, we hope to encourage technical innovation in the field.

5,187 citations