scispace - formally typeset
Search or ask a question
Author

Kumarasamy Muthusamy

Bio: Kumarasamy Muthusamy is an academic researcher from Shanmugha Arts, Science, Technology & Research Academy. The author has contributed to research in topics: Live cell imaging & Molar mass distribution. The author has an hindex of 4, co-authored 5 publications receiving 123 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In the last few years, considerable progress has been made in the synthesis of C-glycosides as mentioned in this paper, and due to its versatility, C glycosides play a pivotal role in developing novel materials, surfactants and bioactive molecules.

69 citations

Journal ArticleDOI
TL;DR: A series of fluorescent glycolipids were synthesized via direct condensation of vinylesters with functionalized sugar alcohol using Novozyme 435, an immobilized lipase B from Candida antarctica as discussed by the authors.

35 citations

Journal ArticleDOI
TL;DR: Multifunctional π-conjugated systems derived from renewable resource that self-assemble into supramolecular structures that show low cytotoxicity in fibroblasts and suppress proliferation in PC3 prostate cancer cells are reported.
Abstract: Multifunctional π-conjugated systems derived from renewable resource that self-assemble into supramolecular structures are reported. The aggregation of compounds in different solvents strongly influences their optical properties. These π-conjugated molecules can be used for live cell imaging applications. They also show low cytotoxicity in fibroblasts and suppress proliferation in PC3 prostate cancer cells.

20 citations

Journal ArticleDOI
TL;DR: For the first time, the self-assembly-assisted polymerization of an oligoester is reported using the intermolecular Diels-Alder reaction, which opens a new avenue in the field of polymer science.
Abstract: We investigate the synthesis of bio-based hydrophilic and hydrophobic oligoesters, which in turn are derived from easily accessible monomers from natural resources. In addition to the selection of renewable monomers, Novozyme 435, an immobilized lipase B from Candida antarctica was used for the oligomerization of monomers. The reaction conditions for oligomerization using Novozyme 435 were established to obtain a moderate-to-good yield. The average number of repeating units and the molecular weight distribution of hydrophilic and hydrophobic oligoester were identified by using NMR spectroscopy, gel-permeation chromatography, and MS. The oligoester derived from a hydrophilic monomer self-assembled to form a viscous solution, which upon further heating resulted in the formation of a polymer by the intermolecular Diels-Alder reaction. The viscosity of the solution and the assembly of oligoester to form a fibrous structure were investigated by using rheological studies, XRD, and SEM. The molecular weight of the cross-linked polymer was identified by using matrix-assisted laser desorption/ionization-MS. The thermal properties of the bio-based polymers were investigated by using thermogravimetric analysis and differential scanning calorimetry. For the first time, the self-assembly-assisted polymerization of an oligoester is reported using the intermolecular Diels-Alder reaction, which opens a new avenue in the field of polymer science.

16 citations

Journal ArticleDOI
TL;DR: In the last few years, considerable progress has been made in the synthesis of C-glycosides as mentioned in this paper, and due to its versatility, C glycosides play a pivotal role in developing novel materials, surfactants and bioactive molecules.
Abstract: In the last few years, considerable progress has been made in the synthesis of C-glycosides. Despite its challenging chemistry, due to its versatility, C-glycosides play a pivotal role in developing novel materials, surfactants and bioactive molecules. In this review, we present snapshots of various synthetic methodologies developed for C-glycosides in the recent years and the potential application of C-glycosides derived from β-C-glycosidic ketones.

3 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Mechanistically, C-glycosylation reactions can involve glycosyl electrophilic/cationic species, anionic species, radical species, or transition-metal complexes, which are discussed as subcategories under each type of sugar precursor.
Abstract: Advances in the chemical synthesis of C-pyranosides/furanosides are summarized, covering the literature from 2000 to 2016. The majority of the methods take advantage of the construction of the glycosidic C—C bond. These C-glycosylation methods are categorized herein in terms of the glycosyl donor precursors, which are commonly used in O-glycoside synthesis and are easily accessible to nonspecialists. They include glycosyl halides, glycals, sugar acetates, sugar lactols, sugar lactones, 1,2-anhydro sugars, thioglycosides/sulfoxides/sulfones, selenoglycosides/telluroglycosides, methyl glycosides, and glycosyl imidates/phosphates. Mechanistically, C-glycosylation reactions can involve glycosyl electrophilic/cationic species, anionic species, radical species, or transition-metal complexes, which are discussed as subcategories under each type of sugar precursor. Moreover, intramolecular rearrangements, such as the Claisen rearrangement, Ramberg–Backlund rearrangement, and 1,2-Wittig rearrangement, which usuall...

314 citations

Journal ArticleDOI
TL;DR: This Review summarizes close to 500 primary publications and surveys published since 2000 about the syntheses and diverse bioactivities of C-glycopyranosyl (het)arenes displaying among others antioxidant, antiviral, antibiotic, antiadhesive, cytotoxic, and glycoenzyme inhibitory effects.
Abstract: This Review summarizes close to 500 primary publications and surveys published since 2000 about the syntheses and diverse bioactivities of C-glycopyranosyl (het)arenes. A classification of the preparative routes to these synthetic targets according to methodologies and compound categories is provided. Several of these compounds, regardless of their natural or synthetic origin, display antidiabetic properties due to enzyme inhibition (glycogen phosphorylase, protein tyrosine phosphatase 1B) or by inhibiting renal sodium-dependent glucose cotransporter 2 (SGLT2). The latter class of synthetic inhibitors, very recently approved as antihyperglycemic drugs, opens new perspectives in the pharmacological treatment of type 2 diabetes. Various compounds with the C-glycopyranosyl (het)arene motif were subjected to biological studies displaying among others antioxidant, antiviral, antibiotic, antiadhesive, cytotoxic, and glycoenzyme inhibitory effects.

151 citations

Journal ArticleDOI
TL;DR: In this article, a comprehensive review of recent developments on monomers and polymers derived from urushiol and cardanol based polymers, vegetable oil-based monomers, and microbially produced monomers is presented.

104 citations

Journal ArticleDOI
TL;DR: It is demonstrated that configurationally stable anomeric stannanes undergo a stereospecific cross-coupling reaction with aromatic halides in the presence of a palladium catalyst with exceptionally high levels of stereocontrol.
Abstract: We demonstrate that configurationally stable anomeric stannanes undergo a stereospecific cross-coupling reaction with aromatic halides in the presence of a palladium catalyst with exceptionally high levels of stereocontrol. In addition to a broad substrate scope (>40 examples), this reaction eliminates critical problems inherent to nucleophilic displacement methods and is applicable to (hetero)aromatics, peptides, pharmaceuticals, common monosaccharides, and saccharides containing free hydroxyl groups.

102 citations