scispace - formally typeset
Search or ask a question
Author

Kumaresh Soppimath

Bio: Kumaresh Soppimath is an academic researcher from Karnatak University. The author has contributed to research in topics: Drug carrier & Controlled release. The author has an hindex of 21, co-authored 40 publications receiving 5244 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: This review presents the most outstanding contributions in the field of biodegradable polymeric nanoparticles used as drug delivery systems from 1990 through mid-2000.

3,284 citations

Journal ArticleDOI
TL;DR: A brief introduction and recent developments in the area of stimulus-responsive hydrogels, particularly those that respond to temperature and pH, and their applications in drug delivery are provided.
Abstract: Recently, there has been a great deal of research activity in the development of stimulus-responsive polymeric hydrogels. These hydrogels are responsive to external or internal stimuli and the response can be observed through abrupt changes in the physical nature of the network. This property can be favorable in many drug delivery applications. The external stimuli can be temperature, pH, ionic strength, ultrasonic sound, electric current, etc. A majority of the literature related to the development of stimulus-responsive drug delivery systems deals with temperature-sensitive poly(N-isopropyl acrylamide) (pNIPAAm) and its various derivatives. However, acrylic-based pH-sensitive systems with weakly acidic/basic functional groups have also been widely studied. Quite recently, glucose-sensitive hydrogels that are responsive to glucose concentration have been developed to monitor the release of insulin. The present article provides a brief introduction and recent developments in the area of stimulus-responsive hydrogels, particularly those that respond to temperature and pH, and their applications in drug delivery.

334 citations

Journal ArticleDOI
TL;DR: Experimental results on the successful encapsulation of a natural liquid pesticide 'neem (Azadirachta Indica A. Juss.) seed oil' hereafter designated as NSO, using sodium alginate as a controlled release polymer after crosslinking with glutaraldehyde (GA) is presented.

261 citations

Journal ArticleDOI
TL;DR: New spherically shaped cross-linked hydrogels of polyacrylamide-grafted guar gum were prepared by the emulsification method and were responsive to pH and ionic strength of the external medium, which exerted a profound influence on the swelling of microgels.

248 citations

Journal ArticleDOI
TL;DR: New interpenetrating polymeric networks of sodium alginate with gelatin or egg albumin cross-linked with a common cross-linking agent, glutaraldehyde, for the in-vitro release of cefadroxil are reported.

163 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The state-of-the-art on hybrid porous solids, their advantages, their new routes of synthesis, the structural concepts useful for their 'design', aiming at reaching very large pores are presented.
Abstract: This critical review will be of interest to the experts in porous solids (including catalysis), but also solid state chemists and physicists. It presents the state-of-the-art on hybrid porous solids, their advantages, their new routes of synthesis, the structural concepts useful for their ‘design’, aiming at reaching very large pores. Their dynamic properties and the possibility of predicting their structure are described. The large tunability of the pore size leads to unprecedented properties and applications. They concern adsorption of species, storage and delivery and the physical properties of the dense phases. (323 references)

5,187 citations

Journal ArticleDOI
TL;DR: Electrospinning is a highly versatile method to process solutions or melts, mainly of polymers, into continuous fibers with diameters ranging from a few micrometers to a few nanometers, applicable to virtually every soluble or fusible polymer.
Abstract: Electrospinning is a highly versatile method to process solutions or melts, mainly of polymers, into continuous fibers with diameters ranging from a few micrometers to a few nanometers. This technique is applicable to virtually every soluble or fusible polymer. The polymers can be chemically modified and can also be tailored with additives ranging from simple carbon-black particles to complex species such as enzymes, viruses, and bacteria. Electrospinning appears to be straightforward, but is a rather intricate process that depends on a multitude of molecular, process, and technical parameters. The method provides access to entirely new materials, which may have complex chemical structures. Electrospinning is not only a focus of intense academic investigation; the technique is already being applied in many technological areas.

3,833 citations

Journal ArticleDOI
TL;DR: The impact of nanoencapsulation of various disease related drugs on biodegradable nanoparticles such as PLGA, PLA, chitosan, gelatin, polycaprolactone and poly-alkyl-cyanoacrylates is highlighted.

3,116 citations

Journal ArticleDOI
TL;DR: This review presents why PLGA has been chosen to design nanoparticles as drug delivery systems in various biomedical applications such as vaccination, cancer, inflammation and other diseases.

2,753 citations

Journal ArticleDOI
TL;DR: Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S. S. Nagar, Punjab-160 062, India, Institute of Biochemistry, Faculty of Medicine, Polytechnic University, Via Ranieri 67, IT-60100 Ancona, Italy, and Department of Medicinal Chemistry & Natural Products,The Hebrew University of Jerusalem, School of Pharmacy-Faculty of medicine, Jerusalem 91120, Israel.
Abstract: Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S. A. S. Nagar,Mohali, Punjab-160 062, India, Institute of Biochemistry, Faculty of Medicine, Polytechnic University, Via Ranieri 67, IT-60100 Ancona, Italy,Green Biotechnology Research Group, The Special Division for Human Life Technology, National Institute of Advanced Industrial Science andTechnology, 1-8-31 Midorigaoka, Ikeda, Osaka-563-8577, Japan, and Department of Medicinal Chemistry & Natural Products,The Hebrew University of Jerusalem, School of Pharmacy-Faculty of Medicine, Jerusalem 91120, IsraelReceived March 2, 2004

2,570 citations