scispace - formally typeset
Search or ask a question
Author

Kumbakonam R. Rajagopal

Bio: Kumbakonam R. Rajagopal is an academic researcher from Texas A&M University. The author has contributed to research in topics: Constitutive equation & Viscoelasticity. The author has an hindex of 77, co-authored 659 publications receiving 23443 citations. Previous affiliations of Kumbakonam R. Rajagopal include Kent State University & University of Wisconsin-Madison.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors present a model to capture the effects during solidification and crystallization in polymers within a purely mechanical setting, using the framework of multiple natural configurations that was introduced recently to study a variety of nonlinear dissipative responses of materials undergoing phase transitions.
Abstract: Crystallization and solidification in polymers is a problem of great importance to the polymer processing industry. In these processes, the melt is subjected to deformation while being cooled into the desired shape. The properties of the final product are strongly influenced by the deformation and thermal histories and the final solid is invariably anisotropic. In this work we present a model to capture the effects during solidification and crystallization in polymers within a purely mechanical setting, using the framework of multiple natural configurations that was introduced recently to study a variety of non-linear dissipative responses of materials undergoing phase transitions. Using this framework we present a consistent method to model the transition from a fluid-like behaviour to a solid-like behaviour. We also present a novel way of incorporating the formation of an anisotropic crystalline phase in the melt. The anisotropy of the crystalline phase, and consequently that of the final solid, depends on the deformation in the melt at the instant of crystallization, a fact that has been known for a long time and has been exploited in polymer processing. The proposed model is tested by solving three homogenous deformations.

57 citations

Journal ArticleDOI
TL;DR: In this article, the second law of thermodynamics is formulated by introducing Gibbs' potential, which is the natural way to study problems involving chemical reactions, and the Gibbs potential-based formulation also naturally leads to implicit constitutive equations for the stress tensor.
Abstract: In this paper, we develop a thermodynamic framework that is capable of describing the response of viscoelastic materials that are undergoing chemical reactions that takes into account stoichiometry. Of course, as a special sub-case, we can also describe the response of elastic materials that undergo chemical reactions. The study generalizes the framework developed by Rajagopal and co-workers to study the response of a disparate class of bodies undergoing entropy producing processes. One of the quintessential feature of this framework is that the second law of thermodynamics is formulated by introducing Gibbs’ potential, which is the natural way to study problems involving chemical reactions. The Gibbs potential–based formulation also naturally leads to implicit constitutive equations for the stress tensor. Another feature of the framework is that the constraints due to stoichiometry can also be taken into account in a consistent manner. The assumption of maximization of the rate of entropy production due to dissipation, heat conduction, and chemical reactions is invoked to determine an equation for the evolution of the natural configuration κ p(t)(B), the heat flux vector and a novel set of equations for the evolution of the concentration of the chemical constituents. To determine the efficacy of the framework with regard to chemical reactions, those occurring during vulcanization, a challenging set of chemical reactions, are chosen. More than one type of reaction mechanism is considered and the theoretically predicted distribution of mono, di and polysulfidic cross-links agree reasonably well with available experimental data.

56 citations

Journal ArticleDOI
TL;DR: In this article, the steady flow of three classes of non-linear fluids of the differential type past a porous plate with uniform suction or injection is studied, and the manner in which the various material parameters affect the structure of the boundary layer is delineated.
Abstract: The problem of the steady flow of three classes of non-linear fluids of the differential type past a porous plate with uniform suction or injection is studied. The flow which is studied is the counterpart of the classical ‘asymptotic suction’ problem, within the context of the non-Newtonian fluid models. The non-linear differential equations resulting from the balance of momentum and mass, coupled with suitable boundary conditions, are solved numerically either by a finite difference method or by a collocation method with a B-spline function basis. The manner in which the various material parameters affect the structure of the boundary layer is delineated. The issue of paucity of boundary conditions for general non-linear fluids of the differential type, and a method for augmenting the boundary conditions for a certain class of flow problems, is illustrated. A comparison is made of the numerical solutions with the solutions from a regular perturbation approach, as well as a singular perturbation.

55 citations

Journal ArticleDOI
TL;DR: In this paper, for the first time, numerical results for two cases: (i) rotation about a common axis, and (ii) rotating about distinct axes, were reported, for two values of the Ekman number E = v/d2ω at the relative disk rotations of s = 0·8, s= 0 and s = −0·25, where s = ω2/ω1.
Abstract: Flows occurring between parallel rotating disks have recently been generalized by Parter & Rajagopal (1984) to include solutions that are not axisymmetric. They prove existence, whereas in the present paper we report, for the first time, numerical results for two cases: (i) rotation about a common axis, and (ii) rotation about distinct axes. Calculations were performed for two values of the Ekman number E = v/d2ω at the relative disk rotations of s = 0·8, s = 0 and s = −0·25, where s = ω2/ω1.

55 citations

Journal ArticleDOI
TL;DR: In this article, a heuristic based on multi-stage programming approach is proposed to solve the loading problem in random type FMS, which is viewed as selecting a subset of jobs from the job pool and allocating them among available machines.
Abstract: Manufacturing industries are rapidly changing from economies of scale to economies of scope, characterized by short product life cycles and increased product varieties. This implies a need to improve the efficiency of job shops while still maintaining their flexibility. These objectives are achieved by Flexible manufacturing systems (FMS). The basic aim of FMS is to bring together the productivity of flow lines and the flexibility of job shops. This duality of objectives makes the management of an FMS complex. In this article, the loading problem in random type FMS, which is viewed as selecting a subset of jobs from the job pool and allocating them among available machines, is considered. A heuristic based on multi-stage programming approach is proposed to solve this problem. The objective considered is to minimize the system unbalance while satisfying the technological constraints such as availability of machining time and tool slots. The performance of the proposed heuristic is tested on 10 sample problems available in FMS literature and compared with existing solution methods. It has been found that the proposed heuristic gives good results.

55 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors developed a constitutive law for the description of the (passive) mechanical response of arterial tissue, where the artery is modeled as a thick-walled nonlinearly elastic circular cylindrical tube consisting of two layers corresponding to the media and adventitia.
Abstract: In this paper we develop a new constitutive law for the description of the (passive) mechanical response of arterial tissue. The artery is modeled as a thick-walled nonlinearly elastic circular cylindrical tube consisting of two layers corresponding to the media and adventitia (the solid mechanically relevant layers in healthy tissue). Each layer is treated as a fiber-reinforced material with the fibers corresponding to the collagenous component of the material and symmetrically disposed with respect to the cylinder axis. The resulting constitutive law is orthotropic in each layer. Fiber orientations obtained from a statistical analysis of histological sections from each arterial layer are used. A specific form of the law, which requires only three material parameters for each layer, is used to study the response of an artery under combined axial extension, inflation and torsion. The characteristic and very important residual stress in an artery in vitro is accounted for by assuming that the natural (unstressed and unstrained) configuration of the material corresponds to an open sector of a tube, which is then closed by an initial bending to form a load-free, but stressed, circular cylindrical configuration prior to application of the extension, inflation and torsion. The effect of residual stress on the stress distribution through the deformed arterial wall in the physiological state is examined. The model is fitted to available data on arteries and its predictions are assessed for the considered combined loadings. It is explained how the new model is designed to avoid certain mechanical, mathematical and computational deficiencies evident in currently available phenomenological models. A critical review of these models is provided by way of background to the development of the new model.

2,887 citations

Journal ArticleDOI
TL;DR: In this paper, a simple model that satisfies most of these criteria uses depth-averaged equations of motion patterned after those of the Savage-Hutter theory for gravity-driven flow of dry granular masses but generalized to include the effects of viscous pore fluid with varying pressure.
Abstract: Recent advances in theory and experimen- tation motivate a thorough reassessment of the physics of debris flows. Analyses of flows of dry, granular solids and solid-fluid mixtures provide a foundation for a com- prehensive debris flow theory, and experiments provide data that reveal the strengths and limitations of theoret- ical models. Both debris flow materials and dry granular materials can sustain shear stresses while remaining stat- ic; both can deform in a slow, tranquil mode character- ized by enduring, frictional grain contacts; and both can flow in a more rapid, agitated mode characterized by brief, inelastic grain collisions. In debris flows, however, pore fluid that is highly viscous and nearly incompress- ible, composed of water with suspended silt and clay, can strongly mediate intergranular friction and collisions. Grain friction, grain collisions, and viscous fluid flow may transfer significant momentum simultaneously. Both the vibrational kinetic energy of solid grains (mea- sured by a quantity termed the granular temperature) and the pressure of the intervening pore fluid facilitate motion of grains past one another, thereby enhancing debris flow mobility. Granular temperature arises from conversion of flow translational energy to grain vibra- tional energy, a process that depends on shear rates, grain properties, boundary conditions, and the ambient fluid viscosity and pressure. Pore fluid pressures that exceed static equilibrium pressures result from local or global debris contraction. Like larger, natural debris flows, experimental debris flows of ;10 m 3 of poorly sorted, water-saturated sediment invariably move as an unsteady surge or series of surges. Measurements at the base of experimental flows show that coarse-grained surge fronts have little or no pore fluid pressure. In contrast, finer-grained, thoroughly saturated debris be- hind surge fronts is nearly liquefied by high pore pres- sure, which persists owing to the great compressibility and moderate permeability of the debris. Realistic mod- els of debris flows therefore require equations that sim- ulate inertial motion of surges in which high-resistance fronts dominated by solid forces impede the motion of low-resistance tails more strongly influenced by fluid forces. Furthermore, because debris flows characteristi- cally originate as nearly rigid sediment masses, trans- form at least partly to liquefied flows, and then trans- form again to nearly rigid deposits, acceptable models must simulate an evolution of material behavior without invoking preternatural changes in material properties. A simple model that satisfies most of these criteria uses depth-averaged equations of motion patterned after those of the Savage-Hutter theory for gravity-driven flow of dry granular masses but generalized to include the effects of viscous pore fluid with varying pressure. These equations can describe a spectrum of debris flow behav- iors intermediate between those of wet rock avalanches and sediment-laden water floods. With appropriate pore pressure distributions the equations yield numerical so- lutions that successfully predict unsteady, nonuniform motion of experimental debris flows.

2,426 citations

01 Mar 1987
TL;DR: The variable-order Adams method (SIVA/DIVA) package as discussed by the authors is a collection of subroutines for solution of non-stiff ODEs.
Abstract: Initial-value ordinary differential equation solution via variable order Adams method (SIVA/DIVA) package is collection of subroutines for solution of nonstiff ordinary differential equations. There are versions for single-precision and double-precision arithmetic. Requires fewer evaluations of derivatives than other variable-order Adams predictor/ corrector methods. Option for direct integration of second-order equations makes integration of trajectory problems significantly more efficient. Written in FORTRAN 77.

1,955 citations

Journal ArticleDOI
TL;DR: A structural continuum framework that is able to represent the dispersion of the collagen fibre orientation is developed and allows the development of a new hyperelastic free-energy function that is particularly suited for representing the anisotropic elastic properties of adventitial and intimal layers of arterial walls.
Abstract: Constitutive relations are fundamental to the solution of problems in continuum mechanics, and are required in the study of, for example, mechanically dominated clinical interventions involving soft biological tissues. Structural continuum constitutive models of arterial layers integrate information about the tissue morphology and therefore allow investigation of the interrelation between structure and function in response to mechanical loading. Collagen fibres are key ingredients in the structure of arteries. In the media (the middle layer of the artery wall) they are arranged in two helically distributed families with a small pitch and very little dispersion in their orientation (i.e. they are aligned quite close to the circumferential direction). By contrast, in the adventitial and intimal layers, the orientation of the collagen fibres is dispersed, as shown by polarized light microscopy of stained arterial tissue. As a result, continuum models that do not account for the dispersion are not able to capture accurately the stress–strain response of these layers. The purpose of this paper, therefore, is to develop a structural continuum framework that is able to represent the dispersion of the collagen fibre orientation. This then allows the development of a new hyperelastic free-energy function that is particularly suited for representing the anisotropic elastic properties of adventitial and intimal layers of arterial walls, and is a generalization of the fibre-reinforced structural model introduced by Holzapfel & Gasser (Holzapfel & Gasser 2001 Comput. Meth. Appl. Mech. Eng. 190, 4379–4403) and Holzapfel et al. (Holzapfel et al. 2000 J. Elast. 61, 1–48). The model incorporates an additional scalar structure parameter that characterizes the dispersed collagen orientation. An efficient finite element implementation of the model is then presented and numerical examples show that the dispersion of the orientation of collagen fibres in the adventitia of human iliac arteries has a significant effect on their mechanical response.

1,905 citations