scispace - formally typeset
Search or ask a question
Author

Kumbakonam R. Rajagopal

Bio: Kumbakonam R. Rajagopal is an academic researcher from Texas A&M University. The author has contributed to research in topics: Constitutive equation & Viscoelasticity. The author has an hindex of 77, co-authored 659 publications receiving 23443 citations. Previous affiliations of Kumbakonam R. Rajagopal include Kent State University & University of Wisconsin-Madison.


Papers
More filters
Journal ArticleDOI
TL;DR: An iterative primal-dual algorithm and a cutting plane algorithm are developed to solve an open problem in system realization theory that has relevance to several important problems in biomedicine, altering the dynamic response of discrete and continuous systems, connectivity of Very Large Scale Integrated circuits, as well as the co-ordination of Unmanned vehicles.
Abstract: We consider a simpler version of an open problem in system realization theory, which has relevance to several important problems in biomedicine, altering the dynamic response of discrete and continuous systems, connectivity of Very Large Scale Integrated circuits, as well as the co-ordination of Unmanned vehicles. The fundamental question this article tries to answer is the following one: Given all the components of a system, how do we put these components together in order to obtain a desired response? In the simplest form, this basic question arises in mechanical systems where, the objective is to connect the masses with springs in a suitable way, and in the most general form, it arises in biomedicine where one is interested in engineering and achieving a desired output by either allowing certain new interactions or disallowing some interactions to take place between the proteins, nucleic acids and other cellular components. We formulate a simpler version of this problem in one dimension (i.e., all the masses and springs are arranged along a line), where the objective is to choose a set of springs to connect the masses so that the resulting “graph” structure is as stiff as possible. The system considered corresponds to an ungrounded structure and will always admit a rigid body mode; for that reason, the smallest natural frequency is zero and we use the smallest non-zero natural frequency as a metric for stiffness of the structure and we maximize this objective. Maximizing the smallest non-zero frequency increases all the natural frequencies thereby making the system stiffer. We develop an iterative primal-dual algorithm and a cutting plane algorithm to solve the problem and provide preliminary computational results on a network up to nine masses.

18 citations

Journal Article
TL;DR: In this paper, mild variations in the properties of the fluid which might warrant it being approximated as a homogeneous fluid with average properties could lead to significant errors in the computation of both global and local quantities associated with the flow.
Abstract: Inhomogeneous fluids have not been studied with the intensity that they deserve. In fact, many studies that are supposedly concerned with the response of inhomogeneous fluids are not directed at inhomogeneous fluids, and this stems from not recognizing the fact that the properties of a fluid varying in its current configuration does not mean that the fluid is inhomogeneous. Here, we show that mild variations in the properties of the fluid which might warrant it being approximated as a homogeneous fluid with average properties could lead to significant errors in the computation of both global and local quantities, associated with the flow.

18 citations

Journal ArticleDOI
TL;DR: In this paper, the authors discuss the flow of BKZ fluids in an orthogonal rheometer and show a boundary layer behavior at high Reynolds numbers and the possibility of discontinuous solutions or nonexistence at high Weissenberg numbers.
Abstract: We discuss the flow of BKZ fluids in an orthogonal rheometer. Some analytical results are proved, and numerical solutions are obtained for the Currie model. These solutions show a boundary layer behavior at high Reynolds numbers and the possibility of discontinuous solutions or nonexistence at high Weissenberg numbers.

18 citations

Journal ArticleDOI
TL;DR: In this paper, the authors derived necessary and sufficient conditions for the fully developed turbulent secondary flow of a Newtonian fluid in a straight tube, under the influence of a conservative body force.
Abstract: In this paper, we derive necessary and sufficient conditions for the fully-developed turbulent secondary flow of a Newtonian fluid in a straight tube, under the influence of a conservative body force. Under special conditions, we show that in the absence of a body force, we can obtain a sufficient condition for turbulent secondary flow in terms of the transverse normal stress differences associated with the Reynolds stress and the transverse shear component of the Reynolds stress.

18 citations

Journal ArticleDOI
01 Jan 2006
TL;DR: In this article, the dependence of viscosity on density is investigated and it is shown that even a small change in density can cause a significant change in visco-coverage.
Abstract: There are many applications, elasto-hydrodynamics being one, where the fluid can be modelled as an incompressible fluid with a viscosity that depends on the pressure (see [15]). The justification for such an assumption stems from the fact that while the density changes by merely a few percent, the pressure can change significantly and the viscosity can change by several orders of magnitude. Of course, there is the possibility that the dependence of viscosity on density is such that even a small change in density causes this change. Experiments clearly suggest that viscosity varies exponentially with pressure and that it is the relationship between the viscosity and the pressure that causes the tremendous change that occurs in the viscosity. That the viscosity of liquids could depend upon the pressure was known to the pioneers of the field. Stokes [14] is in fact very careful to delineate the special class of flows, those in channels and pipes at moderate pressures, when viscosity could be assumed a constant. There is also a considerable amount of literature even prior to 1930 concerning the variation of viscosity with pressure (see Bridgman [4] on the physics of high pressures for a detailed discussion of the same). Bridgman [4] makes it abundantly clear that he devoted a great deal of attention to determining the variation

18 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors developed a constitutive law for the description of the (passive) mechanical response of arterial tissue, where the artery is modeled as a thick-walled nonlinearly elastic circular cylindrical tube consisting of two layers corresponding to the media and adventitia.
Abstract: In this paper we develop a new constitutive law for the description of the (passive) mechanical response of arterial tissue. The artery is modeled as a thick-walled nonlinearly elastic circular cylindrical tube consisting of two layers corresponding to the media and adventitia (the solid mechanically relevant layers in healthy tissue). Each layer is treated as a fiber-reinforced material with the fibers corresponding to the collagenous component of the material and symmetrically disposed with respect to the cylinder axis. The resulting constitutive law is orthotropic in each layer. Fiber orientations obtained from a statistical analysis of histological sections from each arterial layer are used. A specific form of the law, which requires only three material parameters for each layer, is used to study the response of an artery under combined axial extension, inflation and torsion. The characteristic and very important residual stress in an artery in vitro is accounted for by assuming that the natural (unstressed and unstrained) configuration of the material corresponds to an open sector of a tube, which is then closed by an initial bending to form a load-free, but stressed, circular cylindrical configuration prior to application of the extension, inflation and torsion. The effect of residual stress on the stress distribution through the deformed arterial wall in the physiological state is examined. The model is fitted to available data on arteries and its predictions are assessed for the considered combined loadings. It is explained how the new model is designed to avoid certain mechanical, mathematical and computational deficiencies evident in currently available phenomenological models. A critical review of these models is provided by way of background to the development of the new model.

2,887 citations

Journal ArticleDOI
TL;DR: In this paper, a simple model that satisfies most of these criteria uses depth-averaged equations of motion patterned after those of the Savage-Hutter theory for gravity-driven flow of dry granular masses but generalized to include the effects of viscous pore fluid with varying pressure.
Abstract: Recent advances in theory and experimen- tation motivate a thorough reassessment of the physics of debris flows. Analyses of flows of dry, granular solids and solid-fluid mixtures provide a foundation for a com- prehensive debris flow theory, and experiments provide data that reveal the strengths and limitations of theoret- ical models. Both debris flow materials and dry granular materials can sustain shear stresses while remaining stat- ic; both can deform in a slow, tranquil mode character- ized by enduring, frictional grain contacts; and both can flow in a more rapid, agitated mode characterized by brief, inelastic grain collisions. In debris flows, however, pore fluid that is highly viscous and nearly incompress- ible, composed of water with suspended silt and clay, can strongly mediate intergranular friction and collisions. Grain friction, grain collisions, and viscous fluid flow may transfer significant momentum simultaneously. Both the vibrational kinetic energy of solid grains (mea- sured by a quantity termed the granular temperature) and the pressure of the intervening pore fluid facilitate motion of grains past one another, thereby enhancing debris flow mobility. Granular temperature arises from conversion of flow translational energy to grain vibra- tional energy, a process that depends on shear rates, grain properties, boundary conditions, and the ambient fluid viscosity and pressure. Pore fluid pressures that exceed static equilibrium pressures result from local or global debris contraction. Like larger, natural debris flows, experimental debris flows of ;10 m 3 of poorly sorted, water-saturated sediment invariably move as an unsteady surge or series of surges. Measurements at the base of experimental flows show that coarse-grained surge fronts have little or no pore fluid pressure. In contrast, finer-grained, thoroughly saturated debris be- hind surge fronts is nearly liquefied by high pore pres- sure, which persists owing to the great compressibility and moderate permeability of the debris. Realistic mod- els of debris flows therefore require equations that sim- ulate inertial motion of surges in which high-resistance fronts dominated by solid forces impede the motion of low-resistance tails more strongly influenced by fluid forces. Furthermore, because debris flows characteristi- cally originate as nearly rigid sediment masses, trans- form at least partly to liquefied flows, and then trans- form again to nearly rigid deposits, acceptable models must simulate an evolution of material behavior without invoking preternatural changes in material properties. A simple model that satisfies most of these criteria uses depth-averaged equations of motion patterned after those of the Savage-Hutter theory for gravity-driven flow of dry granular masses but generalized to include the effects of viscous pore fluid with varying pressure. These equations can describe a spectrum of debris flow behav- iors intermediate between those of wet rock avalanches and sediment-laden water floods. With appropriate pore pressure distributions the equations yield numerical so- lutions that successfully predict unsteady, nonuniform motion of experimental debris flows.

2,426 citations

01 Mar 1987
TL;DR: The variable-order Adams method (SIVA/DIVA) package as discussed by the authors is a collection of subroutines for solution of non-stiff ODEs.
Abstract: Initial-value ordinary differential equation solution via variable order Adams method (SIVA/DIVA) package is collection of subroutines for solution of nonstiff ordinary differential equations. There are versions for single-precision and double-precision arithmetic. Requires fewer evaluations of derivatives than other variable-order Adams predictor/ corrector methods. Option for direct integration of second-order equations makes integration of trajectory problems significantly more efficient. Written in FORTRAN 77.

1,955 citations

Journal ArticleDOI
TL;DR: A structural continuum framework that is able to represent the dispersion of the collagen fibre orientation is developed and allows the development of a new hyperelastic free-energy function that is particularly suited for representing the anisotropic elastic properties of adventitial and intimal layers of arterial walls.
Abstract: Constitutive relations are fundamental to the solution of problems in continuum mechanics, and are required in the study of, for example, mechanically dominated clinical interventions involving soft biological tissues. Structural continuum constitutive models of arterial layers integrate information about the tissue morphology and therefore allow investigation of the interrelation between structure and function in response to mechanical loading. Collagen fibres are key ingredients in the structure of arteries. In the media (the middle layer of the artery wall) they are arranged in two helically distributed families with a small pitch and very little dispersion in their orientation (i.e. they are aligned quite close to the circumferential direction). By contrast, in the adventitial and intimal layers, the orientation of the collagen fibres is dispersed, as shown by polarized light microscopy of stained arterial tissue. As a result, continuum models that do not account for the dispersion are not able to capture accurately the stress–strain response of these layers. The purpose of this paper, therefore, is to develop a structural continuum framework that is able to represent the dispersion of the collagen fibre orientation. This then allows the development of a new hyperelastic free-energy function that is particularly suited for representing the anisotropic elastic properties of adventitial and intimal layers of arterial walls, and is a generalization of the fibre-reinforced structural model introduced by Holzapfel & Gasser (Holzapfel & Gasser 2001 Comput. Meth. Appl. Mech. Eng. 190, 4379–4403) and Holzapfel et al. (Holzapfel et al. 2000 J. Elast. 61, 1–48). The model incorporates an additional scalar structure parameter that characterizes the dispersed collagen orientation. An efficient finite element implementation of the model is then presented and numerical examples show that the dispersion of the orientation of collagen fibres in the adventitia of human iliac arteries has a significant effect on their mechanical response.

1,905 citations