scispace - formally typeset
Search or ask a question
Author

Kumbakonam R. Rajagopal

Bio: Kumbakonam R. Rajagopal is an academic researcher from Texas A&M University. The author has contributed to research in topics: Constitutive equation & Viscoelasticity. The author has an hindex of 77, co-authored 659 publications receiving 23443 citations. Previous affiliations of Kumbakonam R. Rajagopal include Kent State University & University of Wisconsin-Madison.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors investigate the dynamic response of a generalization of an incompressible Kelvin-Voigt viscoelastic solid whose viscosity depends on the pressure.

15 citations

Journal ArticleDOI
TL;DR: This short paper studies the counterpart, within the context of a general class of fluids, of two famous unsteady flows originally studied by Stokes, withinThe context of Navier-Stokes fluid, namely Stokes' first and second problems.

15 citations

Journal ArticleDOI
TL;DR: In this paper, a generalization of the Oberbeck-Boussinesq approximation is proposed, where the volume change depends both on the temperature and on the pressure that the fluid is subject to.
Abstract: There has been considerable interest, ever since the development of the approximation by Oberbeck and Boussinesq concerning fluids that are mechanically incompressible but thermally compressible, in giving a rigorous justification for the same. For such fluids, it would be natural to assume that the determinant of the deformation gradient (which is a measure of the volume change of the body) depends on the temperature. However, such an assumption has the attendant drawbacks of the specific heat of the fluid at constant volume being zero and the speed of sound in the fluid being complex. In this paper, we consider a generalization of the Oberbeck–Boussinesq approximation, wherein the volume change depends both on the temperature and on the pressure that the fluid is subject to. We show that within the context of this generalization, the specific heat at constant volume can be defined meaningfully, and it is not zero.

15 citations

Journal ArticleDOI
TL;DR: In this article, the notion of suction is revisited by deriving an expression for pore fluid pressure in a simple osmotic, capillary tube using the framework of mixture theory in conjunction with the fundamental laws of thermodynamics.
Abstract: An accurate quantification of negative pore pressure (commonly referred to as ‘suction’) in the pore network is necessary for modeling the mechanical response of unsaturated geomaterials. Traditional definitions and formulations of total, matric, and osmotic suction suggest incorrect pore fluid pressures under certain conditions. In this paper, the notion of suction is revisited by deriving an expression for pore fluid pressure in a simple osmotic, capillary tube using the framework of mixture theory in conjunction with the fundamental laws of thermodynamics. Based on the derived expression for the tube, expressions are derived for total, matric, and osmotic suction for partially saturated geomaterials. Particular attention is given to osmotic suction since confusion regarding its mechanisms has apparently contributed to its misapplication in geomechanics. The new expressions derived herein adequately explain behavior that is incorrectly explained by the traditional formulations and unifies two approaches to modeling osmotic suction previously considered to be in contradiction.

15 citations

Journal ArticleDOI
TL;DR: In this paper, the authors used an orthogonal rheometer in the torsional mode to measure the torque and normal force of a granular material (frac sand) for different compaction ratios and rotation rates.
Abstract: Some properties of a granular material (frac sand) is measured using an orthogonal rheometer in the torsional mode. The description and the operation of the torsional rheometer and the procedure of measurement are presented. A simple test provides some insight into the slip between the granular material and the disk. The raw data, namely torque and normal force, are documented for different compaction ratios, rotation rates, and sizes of the particles. Results show remarkably small variations and show that the measured normal force and torque decrease with increasing rotation rate. Results also show the residual forces after the disk stops. It is hard to find such data for granular materials in the literature, and it could be used to determine the material moduli for specific models.

14 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors developed a constitutive law for the description of the (passive) mechanical response of arterial tissue, where the artery is modeled as a thick-walled nonlinearly elastic circular cylindrical tube consisting of two layers corresponding to the media and adventitia.
Abstract: In this paper we develop a new constitutive law for the description of the (passive) mechanical response of arterial tissue. The artery is modeled as a thick-walled nonlinearly elastic circular cylindrical tube consisting of two layers corresponding to the media and adventitia (the solid mechanically relevant layers in healthy tissue). Each layer is treated as a fiber-reinforced material with the fibers corresponding to the collagenous component of the material and symmetrically disposed with respect to the cylinder axis. The resulting constitutive law is orthotropic in each layer. Fiber orientations obtained from a statistical analysis of histological sections from each arterial layer are used. A specific form of the law, which requires only three material parameters for each layer, is used to study the response of an artery under combined axial extension, inflation and torsion. The characteristic and very important residual stress in an artery in vitro is accounted for by assuming that the natural (unstressed and unstrained) configuration of the material corresponds to an open sector of a tube, which is then closed by an initial bending to form a load-free, but stressed, circular cylindrical configuration prior to application of the extension, inflation and torsion. The effect of residual stress on the stress distribution through the deformed arterial wall in the physiological state is examined. The model is fitted to available data on arteries and its predictions are assessed for the considered combined loadings. It is explained how the new model is designed to avoid certain mechanical, mathematical and computational deficiencies evident in currently available phenomenological models. A critical review of these models is provided by way of background to the development of the new model.

2,887 citations

Journal ArticleDOI
TL;DR: In this paper, a simple model that satisfies most of these criteria uses depth-averaged equations of motion patterned after those of the Savage-Hutter theory for gravity-driven flow of dry granular masses but generalized to include the effects of viscous pore fluid with varying pressure.
Abstract: Recent advances in theory and experimen- tation motivate a thorough reassessment of the physics of debris flows. Analyses of flows of dry, granular solids and solid-fluid mixtures provide a foundation for a com- prehensive debris flow theory, and experiments provide data that reveal the strengths and limitations of theoret- ical models. Both debris flow materials and dry granular materials can sustain shear stresses while remaining stat- ic; both can deform in a slow, tranquil mode character- ized by enduring, frictional grain contacts; and both can flow in a more rapid, agitated mode characterized by brief, inelastic grain collisions. In debris flows, however, pore fluid that is highly viscous and nearly incompress- ible, composed of water with suspended silt and clay, can strongly mediate intergranular friction and collisions. Grain friction, grain collisions, and viscous fluid flow may transfer significant momentum simultaneously. Both the vibrational kinetic energy of solid grains (mea- sured by a quantity termed the granular temperature) and the pressure of the intervening pore fluid facilitate motion of grains past one another, thereby enhancing debris flow mobility. Granular temperature arises from conversion of flow translational energy to grain vibra- tional energy, a process that depends on shear rates, grain properties, boundary conditions, and the ambient fluid viscosity and pressure. Pore fluid pressures that exceed static equilibrium pressures result from local or global debris contraction. Like larger, natural debris flows, experimental debris flows of ;10 m 3 of poorly sorted, water-saturated sediment invariably move as an unsteady surge or series of surges. Measurements at the base of experimental flows show that coarse-grained surge fronts have little or no pore fluid pressure. In contrast, finer-grained, thoroughly saturated debris be- hind surge fronts is nearly liquefied by high pore pres- sure, which persists owing to the great compressibility and moderate permeability of the debris. Realistic mod- els of debris flows therefore require equations that sim- ulate inertial motion of surges in which high-resistance fronts dominated by solid forces impede the motion of low-resistance tails more strongly influenced by fluid forces. Furthermore, because debris flows characteristi- cally originate as nearly rigid sediment masses, trans- form at least partly to liquefied flows, and then trans- form again to nearly rigid deposits, acceptable models must simulate an evolution of material behavior without invoking preternatural changes in material properties. A simple model that satisfies most of these criteria uses depth-averaged equations of motion patterned after those of the Savage-Hutter theory for gravity-driven flow of dry granular masses but generalized to include the effects of viscous pore fluid with varying pressure. These equations can describe a spectrum of debris flow behav- iors intermediate between those of wet rock avalanches and sediment-laden water floods. With appropriate pore pressure distributions the equations yield numerical so- lutions that successfully predict unsteady, nonuniform motion of experimental debris flows.

2,426 citations

01 Mar 1987
TL;DR: The variable-order Adams method (SIVA/DIVA) package as discussed by the authors is a collection of subroutines for solution of non-stiff ODEs.
Abstract: Initial-value ordinary differential equation solution via variable order Adams method (SIVA/DIVA) package is collection of subroutines for solution of nonstiff ordinary differential equations. There are versions for single-precision and double-precision arithmetic. Requires fewer evaluations of derivatives than other variable-order Adams predictor/ corrector methods. Option for direct integration of second-order equations makes integration of trajectory problems significantly more efficient. Written in FORTRAN 77.

1,955 citations

Journal ArticleDOI
TL;DR: A structural continuum framework that is able to represent the dispersion of the collagen fibre orientation is developed and allows the development of a new hyperelastic free-energy function that is particularly suited for representing the anisotropic elastic properties of adventitial and intimal layers of arterial walls.
Abstract: Constitutive relations are fundamental to the solution of problems in continuum mechanics, and are required in the study of, for example, mechanically dominated clinical interventions involving soft biological tissues. Structural continuum constitutive models of arterial layers integrate information about the tissue morphology and therefore allow investigation of the interrelation between structure and function in response to mechanical loading. Collagen fibres are key ingredients in the structure of arteries. In the media (the middle layer of the artery wall) they are arranged in two helically distributed families with a small pitch and very little dispersion in their orientation (i.e. they are aligned quite close to the circumferential direction). By contrast, in the adventitial and intimal layers, the orientation of the collagen fibres is dispersed, as shown by polarized light microscopy of stained arterial tissue. As a result, continuum models that do not account for the dispersion are not able to capture accurately the stress–strain response of these layers. The purpose of this paper, therefore, is to develop a structural continuum framework that is able to represent the dispersion of the collagen fibre orientation. This then allows the development of a new hyperelastic free-energy function that is particularly suited for representing the anisotropic elastic properties of adventitial and intimal layers of arterial walls, and is a generalization of the fibre-reinforced structural model introduced by Holzapfel & Gasser (Holzapfel & Gasser 2001 Comput. Meth. Appl. Mech. Eng. 190, 4379–4403) and Holzapfel et al. (Holzapfel et al. 2000 J. Elast. 61, 1–48). The model incorporates an additional scalar structure parameter that characterizes the dispersed collagen orientation. An efficient finite element implementation of the model is then presented and numerical examples show that the dispersion of the orientation of collagen fibres in the adventitia of human iliac arteries has a significant effect on their mechanical response.

1,905 citations